• Previous Article
    The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer
  • MBE Home
  • This Issue
  • Next Article
    Saturated treatments and measles resurgence episodes in South Africa: A possible linkage
2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159

Modelling seasonal HFMD with the recessive infection in Shandong, China

1. 

Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China, China, China

2. 

Department of Mathematics, North University of China, School of Mechatronic Engineering, North University of China, Taiyuan, Shanxi 030051, China

Received  March 2012 Revised  February 2013 Published  June 2013

Hand, foot and mouth disease (HFMD) is one of the major public-health problems in China. Based on the HFMD data of the Department of Health of Shandong Province, we propose a dynamic model with periodic transmission rates to investigate the seasonal HFMD. After evaluating the basic reproduction number, we analyze the dynamical behaviors of the model and simulate the HFMD data of Shandong Province. By carrying out the sensitivity analysis of some key parameters, we conclude that the recessive subpopulation plays an important role in the spread of HFMD, and only quarantining the infected is not an effective measure in controlling the disease.
Citation: Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao. Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1159-1171. doi: 10.3934/mbe.2013.10.1159
References:
[1]

O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model,, Ecol. Monogr., 72 (2002), 169. Google Scholar

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421. doi: 10.1007/s00285-006-0015-0. Google Scholar

[3]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9. Google Scholar

[4]

CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD),", , (). Google Scholar

[5]

CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012,, , (). Google Scholar

[6]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases,, Emerg. Infect. Dis., 7 (2001), 369. Google Scholar

[7]

J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics,, Proc. Natl. Acad. Sci., 101 (2004), 16915. doi: 10.1073/pnas.0407293101. Google Scholar

[8]

Z. Grossman, Oscillatory phenomena in a model of infectious diseases,, Theory. Pop. Biol., 18 (1980), 204. doi: 10.1016/0040-5809(80)90050-7. Google Scholar

[9]

J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate,, Nonlinear. Dyn., 64 (2011), 89. doi: 10.1007/s11071-010-9848-6. Google Scholar

[10]

M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010,, PLoS ONE., 6 (2011). doi: 10.1371/journal.pone.0025287. Google Scholar

[11]

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates,, Am. J. Epidemiol., 98 (1973), 453. Google Scholar

[12]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models,, Math. Biosci. Eng., 3 (2006), 161. doi: 10.3934/mbe.2006.3.161. Google Scholar

[13]

I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate,, Math. Biosci. Eng., 2 (2005), 591. doi: 10.3934/mbe.2005.2.591. Google Scholar

[14]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease,", Science Press, (2004). Google Scholar

[15]

L. Perko, "Differential Equations and Dynamical System,", Springer-Verlag, (2000). Google Scholar

[16]

I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics,, J. Math. Biol., 30 (1992), 473. doi: 10.1007/BF00160532. Google Scholar

[17]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model,, J. Math. Biol., 18 (1983), 233. doi: 10.1007/BF00276090. Google Scholar

[18]

, Shandong Statistical Information,, , (). Google Scholar

[19]

F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak,, in, (2008), 947. doi: 10.1109/AMS.2008.139. Google Scholar

[20]

M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo,, Jpn. J. Infect. Dis., 56 (2003), 48. Google Scholar

[21]

WHO, Emerging disease surveillance and response,, , (). Google Scholar

[22]

D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009,, Arch. Virol., 156 (2011), 945. Google Scholar

[23]

A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV),, Math. Biosci., 172 (2001), 95. doi: 10.1016/S0025-5564(01)00066-9. Google Scholar

[24]

L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models,, Math. Biosci., 209 (2007), 222. doi: 10.1016/j.mbs.2006.08.018. Google Scholar

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Biol. Dyn., 3 (2008), 699. doi: 10.1007/s10884-008-9111-8. Google Scholar

[26]

Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009),, Biomed. Environ. Sci., 4 (2011), 349. Google Scholar

[27]

Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China,, J. Clin. Virol., 44 (2009), 262. Google Scholar

[28]

J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226. doi: 10.1007/s11538-012-9720-6. Google Scholar

[29]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496. doi: 10.1016/j.jmaa.2006.01.085. Google Scholar

show all references

References:
[1]

O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model,, Ecol. Monogr., 72 (2002), 169. Google Scholar

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421. doi: 10.1007/s00285-006-0015-0. Google Scholar

[3]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9. Google Scholar

[4]

CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD),", , (). Google Scholar

[5]

CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012,, , (). Google Scholar

[6]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases,, Emerg. Infect. Dis., 7 (2001), 369. Google Scholar

[7]

J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics,, Proc. Natl. Acad. Sci., 101 (2004), 16915. doi: 10.1073/pnas.0407293101. Google Scholar

[8]

Z. Grossman, Oscillatory phenomena in a model of infectious diseases,, Theory. Pop. Biol., 18 (1980), 204. doi: 10.1016/0040-5809(80)90050-7. Google Scholar

[9]

J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate,, Nonlinear. Dyn., 64 (2011), 89. doi: 10.1007/s11071-010-9848-6. Google Scholar

[10]

M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010,, PLoS ONE., 6 (2011). doi: 10.1371/journal.pone.0025287. Google Scholar

[11]

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates,, Am. J. Epidemiol., 98 (1973), 453. Google Scholar

[12]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models,, Math. Biosci. Eng., 3 (2006), 161. doi: 10.3934/mbe.2006.3.161. Google Scholar

[13]

I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate,, Math. Biosci. Eng., 2 (2005), 591. doi: 10.3934/mbe.2005.2.591. Google Scholar

[14]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease,", Science Press, (2004). Google Scholar

[15]

L. Perko, "Differential Equations and Dynamical System,", Springer-Verlag, (2000). Google Scholar

[16]

I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics,, J. Math. Biol., 30 (1992), 473. doi: 10.1007/BF00160532. Google Scholar

[17]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model,, J. Math. Biol., 18 (1983), 233. doi: 10.1007/BF00276090. Google Scholar

[18]

, Shandong Statistical Information,, , (). Google Scholar

[19]

F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak,, in, (2008), 947. doi: 10.1109/AMS.2008.139. Google Scholar

[20]

M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo,, Jpn. J. Infect. Dis., 56 (2003), 48. Google Scholar

[21]

WHO, Emerging disease surveillance and response,, , (). Google Scholar

[22]

D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009,, Arch. Virol., 156 (2011), 945. Google Scholar

[23]

A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV),, Math. Biosci., 172 (2001), 95. doi: 10.1016/S0025-5564(01)00066-9. Google Scholar

[24]

L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models,, Math. Biosci., 209 (2007), 222. doi: 10.1016/j.mbs.2006.08.018. Google Scholar

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Biol. Dyn., 3 (2008), 699. doi: 10.1007/s10884-008-9111-8. Google Scholar

[26]

Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009),, Biomed. Environ. Sci., 4 (2011), 349. Google Scholar

[27]

Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China,, J. Clin. Virol., 44 (2009), 262. Google Scholar

[28]

J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226. doi: 10.1007/s11538-012-9720-6. Google Scholar

[29]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496. doi: 10.1016/j.jmaa.2006.01.085. Google Scholar

[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[3]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[4]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[5]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[6]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[7]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[8]

Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005

[9]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[10]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[11]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[12]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[13]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[14]

Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031

[15]

Xiao-Wen Chang, Ren-Cang Li. Multiplicative perturbation analysis for QR factorizations. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 301-316. doi: 10.3934/naco.2011.1.301

[16]

Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure & Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175

[17]

Rodrigo Donizete Euzébio, Jaume Llibre. Periodic solutions of El Niño model through the Vallis differential system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3455-3469. doi: 10.3934/dcds.2014.34.3455

[18]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[19]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (I) --- Basic state solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1091-1116. doi: 10.3934/dcdsb.2004.4.1091

[20]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]