2012, 9(1): 165-174. doi: 10.3934/mbe.2012.9.165

Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes

1. 

Unidad Académica de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas C.U., Chilpancingo, Guerrero, Mexico

Received  March 2011 Revised  May 2011 Published  December 2011

A delayed vector-bias model for malaria transmission with incubation period in mosquitoes is studied. The delay $\tau$ corresponds to the time necessary for a latently infected vector to become an infectious vector. We prove that the global stability is completely determined by the threshold parameter, $R_0(\tau)$. If $R_0(\tau)\leq1$, the disease-free equilibrium is globally asymptotically stable. If $R_0(\tau)>1$ a unique endemic equilibrium exists and is globally asymptotically stable. We apply our results to Ross-MacDonald malaria models with an incubation period (extrinsic or intrinsic).
Citation: Cruz Vargas-De-León. Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Mathematical Biosciences & Engineering, 2012, 9 (1) : 165-174. doi: 10.3934/mbe.2012.9.165
References:
[1]

F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission,, Bull. Math. Biol., 73 (2011), 639. doi: 10.1007/s11538-010-9545-0. Google Scholar

[2]

G. R. Hosack, P. A. Rossignol and P. van den Driessche, The control of vector-borne disease epidemics,, J. Theoret. Biol., 255 (2008), 16. doi: 10.1016/j.jtbi.2008.07.033. Google Scholar

[3]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: 10.1007/s11538-009-9487-6. Google Scholar

[4]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821. Google Scholar

[5]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. doi: 10.1007/s00285-010-0368-2. Google Scholar

[6]

J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria,, Am. Nat., 130 (1987), 811. doi: 10.1086/284749. Google Scholar

[7]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. Google Scholar

[8]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[9]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence, and nonlinear incidence rate,, Math. Medic. Biol., 26 (2009), 225. doi: 10.1093/imammb/dqp006. Google Scholar

[10]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'', Mathematics in Science and Engineering, 191 (1993). Google Scholar

[11]

R. Lacroix, W. R. Mukabana, L. C. Gouagna and J. C. Koella, Malaria infection increases attractiveness of humans to mosquitoes,, PLOS Biol., 3 (2005). doi: 10.1371/journal.pbio.0030298. Google Scholar

[12]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011). doi: 10.1007/s00285-010-0346-8. Google Scholar

[13]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x. Google Scholar

[14]

G. Macdonald, The analysis of equilibrium in malaria,, Trop. Dis. Bull., 49 (1952), 813. Google Scholar

[15]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014. Google Scholar

[16]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106. doi: 10.1016/j.nonrwa.2009.11.005. Google Scholar

[17]

R. Ross, "The Prevention of Malaria,'', Second edition, (1911). Google Scholar

[18]

C. Vargas-De-León, Global properties for virus dynamics model with mitotic transmission and intracellular delay,, J. Math. Anal. Appl., 381 (2011), 884. doi: 10.1016/j.jmaa.2011.04.012. Google Scholar

[19]

C. Vargas-De-León and G. Gómez-Alcaraz, Global stability conditions of delayed SIRS epidemiological model for vector diseases,, Foro-Red-Mat: Revista Electrónica de Contenido Matemático, 28 (2011). Google Scholar

show all references

References:
[1]

F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission,, Bull. Math. Biol., 73 (2011), 639. doi: 10.1007/s11538-010-9545-0. Google Scholar

[2]

G. R. Hosack, P. A. Rossignol and P. van den Driessche, The control of vector-borne disease epidemics,, J. Theoret. Biol., 255 (2008), 16. doi: 10.1016/j.jtbi.2008.07.033. Google Scholar

[3]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: 10.1007/s11538-009-9487-6. Google Scholar

[4]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821. Google Scholar

[5]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. doi: 10.1007/s00285-010-0368-2. Google Scholar

[6]

J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria,, Am. Nat., 130 (1987), 811. doi: 10.1086/284749. Google Scholar

[7]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. Google Scholar

[8]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[9]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence, and nonlinear incidence rate,, Math. Medic. Biol., 26 (2009), 225. doi: 10.1093/imammb/dqp006. Google Scholar

[10]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'', Mathematics in Science and Engineering, 191 (1993). Google Scholar

[11]

R. Lacroix, W. R. Mukabana, L. C. Gouagna and J. C. Koella, Malaria infection increases attractiveness of humans to mosquitoes,, PLOS Biol., 3 (2005). doi: 10.1371/journal.pbio.0030298. Google Scholar

[12]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011). doi: 10.1007/s00285-010-0346-8. Google Scholar

[13]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x. Google Scholar

[14]

G. Macdonald, The analysis of equilibrium in malaria,, Trop. Dis. Bull., 49 (1952), 813. Google Scholar

[15]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014. Google Scholar

[16]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106. doi: 10.1016/j.nonrwa.2009.11.005. Google Scholar

[17]

R. Ross, "The Prevention of Malaria,'', Second edition, (1911). Google Scholar

[18]

C. Vargas-De-León, Global properties for virus dynamics model with mitotic transmission and intracellular delay,, J. Math. Anal. Appl., 381 (2011), 884. doi: 10.1016/j.jmaa.2011.04.012. Google Scholar

[19]

C. Vargas-De-León and G. Gómez-Alcaraz, Global stability conditions of delayed SIRS epidemiological model for vector diseases,, Foro-Red-Mat: Revista Electrónica de Contenido Matemático, 28 (2011). Google Scholar

[1]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[2]

Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995

[3]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[4]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[5]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[6]

Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li. The impact of releasing sterile mosquitoes on malaria transmission. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3837-3853. doi: 10.3934/dcdsb.2018113

[7]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[8]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[9]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[10]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[11]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[12]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[13]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[14]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[15]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[16]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[17]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[18]

Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401

[19]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[20]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]