    2011, 8(4): 931-952. doi: 10.3934/mbe.2011.8.931

## An SEIR epidemic model with constant latency time and infectious period

 1 CIMAB, University of Milano, via C. Saldini 50, I20133 Milano, Italy 2 Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I33100 Udine, Italy

Received  September 2010 Revised  March 2011 Published  August 2011

We present a two delays SEIR epidemic model with a saturation incidence rate. One delay is the time taken by the infected individuals to become infectious (i.e. capable to infect a susceptible individual), the second delay is the time taken by an infectious individual to be removed from the infection. By iterative schemes and the comparison principle, we provide global attractivity results for both the equilibria, i.e. the disease-free equilibrium $\mathbf{E}_{0}$ and the positive equilibrium $\mathbf{E}_{+}$, which exists iff the basic reproduction number $\mathcal{R}_{0}$ is larger than one. If $\mathcal{R}_{0}>1$ we also provide a permanence result for the model solutions. Finally we prove that the two delays are harmless in the sense that, by the analysis of the characteristic equations, which result to be polynomial trascendental equations with polynomial coefficients dependent upon both delays, we confirm all the standard properties of an epidemic model: $\mathbf{E}_{0}$ is locally asymptotically stable for $\mathcal{R}% _{0}<1$ and unstable for $\mathcal{R}_{0}>1$, while if $\mathcal{R}_{0}>1$ then $\mathbf{E}_{+}$ is always asymptotically stable.
Citation: Edoardo Beretta, Dimitri Breda. An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences & Engineering, 2011, 8 (4) : 931-952. doi: 10.3934/mbe.2011.8.931
##### References:
  E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144. Google Scholar  V. Capasso and G. Serio, A generalization of the Kermack-McKendric deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8.  Google Scholar  M. Giaquinta and G. Modica, "Mathematical Analysis. An Introduction to Functions of Several Variables,", Birkhauser Boston, (2009). Google Scholar  G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. Google Scholar  G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infection,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821.  Google Scholar  G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: 10.1007/s11538-009-9487-6. Google Scholar  A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar  Y. Kuang, "Delay Differential Equations with Application in Population Dynamics,", Dynamics in Science and Engineering, (1993). Google Scholar  M. A. Safi and A. B. Gumel, Global asymptotic dynamics of a model of quarantine and isolation,, Discrete Contin. Dyn. S., 14 (2010), 209. doi: 10.3934/dcdsb.2010.14.209.  Google Scholar  H. L. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences,", Texts in Applied Mathematics, (2011). doi: 10.1007/978-1-4419-7646-8.  Google Scholar  R. Xu and Y. Du, \ A delayed SIR epidemic model with saturation incidence and constant infectious period,, J. Appl. Math. Comp., 35 (2010), 229. doi: 10.1007/s12190-009-0353-3. Google Scholar  R. Xu and Z. Ma, Global stability of a delayed SEIRS epidemic model with saturation incidence rate,, Nonlinear Dynam., 61 (2010), 229. doi: 10.1007/s11071-009-9644-3.  Google Scholar  F. Zhang, Z. Li and F. Zhang, Global stability of an SIR epidemic model with constant infectious period,, Appl. Math. Comput, 199 (2008), 285. doi: 10.1016/j.amc.2007.09.053. Google Scholar

show all references

##### References:
  E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144. Google Scholar  V. Capasso and G. Serio, A generalization of the Kermack-McKendric deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8.  Google Scholar  M. Giaquinta and G. Modica, "Mathematical Analysis. An Introduction to Functions of Several Variables,", Birkhauser Boston, (2009). Google Scholar  G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. Google Scholar  G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infection,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821.  Google Scholar  G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: 10.1007/s11538-009-9487-6. Google Scholar  A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar  Y. Kuang, "Delay Differential Equations with Application in Population Dynamics,", Dynamics in Science and Engineering, (1993). Google Scholar  M. A. Safi and A. B. Gumel, Global asymptotic dynamics of a model of quarantine and isolation,, Discrete Contin. Dyn. S., 14 (2010), 209. doi: 10.3934/dcdsb.2010.14.209.  Google Scholar  H. L. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences,", Texts in Applied Mathematics, (2011). doi: 10.1007/978-1-4419-7646-8.  Google Scholar  R. Xu and Y. Du, \ A delayed SIR epidemic model with saturation incidence and constant infectious period,, J. Appl. Math. Comp., 35 (2010), 229. doi: 10.1007/s12190-009-0353-3. Google Scholar  R. Xu and Z. Ma, Global stability of a delayed SEIRS epidemic model with saturation incidence rate,, Nonlinear Dynam., 61 (2010), 229. doi: 10.1007/s11071-009-9644-3.  Google Scholar  F. Zhang, Z. Li and F. Zhang, Global stability of an SIR epidemic model with constant infectious period,, Appl. Math. Comput, 199 (2008), 285. doi: 10.1016/j.amc.2007.09.053. Google Scholar
  C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837  Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016  Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93  Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61  Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445  Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785  Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133  Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057  Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119  Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101  Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173  Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727  Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264  Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082  Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161  Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525  Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134  David Schley, S.A. Gourley. Linear and nonlinear stability in a diffusional ecotoxicological model with time delays. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 575-590. doi: 10.3934/dcdsb.2002.2.575  Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002  Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

2018 Impact Factor: 1.313