2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445

Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle

1. 

Department of Mathematics, Bar Ilan University, Ramat Gan 52900, Israel, Ireland

2. 

Life Science Faculty, Bar Ilan University, Ramat Gan 52900, Ireland

Received  April 2010 Revised  October 2010 Published  April 2011

The cell cycle is regulated by a large number of enzymes and transcription factors. We have developed a modular description of the cell cycle, based on a set of interleaved modular feedback loops, each leading to a cyclic behavior. The slowest loop is the E2F transcription and ubiquitination, which determines the cycling frequency of the entire cell cycle. Faster feedback loops describe the dynamics of each Cyclin by itself. Our model shows that the cell cycle progression as well as the checkpoints of the cell cycle can be understood through the interactions between the main E2F feedback loop and the driven Cyclin feedback loops. Multiple models were proposed for the cell cycle dynamics; each with differing basic mechanisms. We here propose a new generic formalism. In contrast with existing models, the proposed formalism allows a straightforward analysis and understanding of the dynamics, neglecting the details of each interaction. This model is not sensitive to small changes in the parameters used and it reproduces the observed behavior of the transcription factor E2F and different Cyclins in continuous or regulated cycling conditions. The modular description of the cell cycle resolves the gap between cyclic models, solely based on protein-protein reactions and transcription reactions based models. Beyond the explanation of existing observations, this model suggests the existence of unknown interactions, such as the need for a functional interaction between Cyclin B and retinoblastoma protein (Rb) de-phosphorylation.
Citation: Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445
References:
[1]

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, "Molecular Biology of the Cell,", fifth edition, (2007). Google Scholar

[2]

T. Bashir, N. V. Dorrello, V. Amador, D. Guardavaccaro and M. Pagano, Control of the scf(skp2-cks1) ubiquitin ligase by the apc/c(cdh1) ubiquitin ligase,, Nature, 428 (2004), 190. doi: 10.1038/nature02330. Google Scholar

[3]

D. Bech-Otschir, M. Seeger and W. Dubiel, The cop9 signalosome: At the interface between signal transduction and ubiquitin-dependent proteolysis,, J. Cell Sci., 115 (2002), 467. Google Scholar

[4]

C. Berthet, E. Aleem, V. Coppola, L. Tessarollo and P. Kaldis, Cdk2 knockout mice are viable,, Curr. Biol., 13 (2003), 1775. doi: 10.1016/j.cub.2003.09.024. Google Scholar

[5]

M. Bilodeau, H. Talarmin, G. Ilyin, C. Rescan, D. Glaise, S. Cariou, P. Loyer, C. Guguen-Guillouzo and G. Baffet, Skp2 induction and phosphorylation is associated with the late g1 phase of proliferating rat hepatocytes,, FEBS Lett, 452 (1999), 247. doi: 10.1016/S0014-5793(99)00629-8. Google Scholar

[6]

M. Brandeis, I. Rosewell, M. Carrington, T. Crompton, M. A. Jacobs, J. Kirk, J. Gannon and T. Hunt, Cyclin b2-null mice develop normally and are fertile whereas cyclin b1-null mice die in utero,, Proc. Natl. Acad. Sci. U.S.A., 95 (1998), 4344. doi: 10.1073/pnas.95.8.4344. Google Scholar

[7]

K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak and J. J. Tyson, Integrative analysis of cell cycle control in budding yeast,, Mol. Biol. Cell, 15 (2004), 3841. doi: 10.1091/mbc.E03-11-0794. Google Scholar

[8]

L. Chen, R. Wang, T. J. Kobayashi and K. Aihara, Dynamics of gene regulatory networks with cell division cycle,, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 70 (2004). doi: 10.1103/PhysRevE.70.011909. Google Scholar

[9]

M. Cheng, P. Olivier, J. A. Diehl, M. Fero, M. F. Roussel, J. M. Roberts and C. J. Sherr, The p21(cip1) and p27(kip1) cdk 'inhibitors' are essential activators of cyclin d-dependent kinases in murine fibroblasts,, Embo. J., 18 (1999), 1571. doi: 10.1093/emboj/18.6.1571. Google Scholar

[10]

S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O. Brown and I. Herskowitz, The transcriptional program of sporulation in budding yeast,, Science, 282 (1998), 699. doi: 10.1126/science.282.5389.699. Google Scholar

[11]

J. Culotti and L. H. Hartwell, Genetic control of the cell division cycle in yeast. 3. seven genes controlling nuclear division,, Exp. Cell Res., 67 (1971), 389. doi: 10.1016/0014-4827(71)90424-1. Google Scholar

[12]

S. J. D'Souza, A. Vespa, S. Murkherjee, A. Maher, A. Pajak and L. Dagnino, E2f-1 is essential for normal epidermal wound repair,, J. Biol. Chem., 277 (2002), 10626. doi: 10.1074/jbc.M111956200. Google Scholar

[13]

H. L. Ford and A. B. Pardee, Cancer and the cell cycle,, J. Cell Biochem., 32-33 (1999), 32. doi: 10.1002/(SICI)1097-4644(1999)75:32+<166::AID-JCB20>3.0.CO;2-J. Google Scholar

[14]

A. Fotovati, K. Nakayama and K. I. Nakayama, Impaired germ cell development due to compromised cell cycle progression in skp2-deficient mice,, Cell Div., 1 (2006). doi: 10.1186/1747-1028-1-4. Google Scholar

[15]

J. M. Galan and M. Peter, Ubiquitin-dependent degradation of multiple f-box proteins by an autocatalytic mechanism,, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 9124. doi: 10.1073/pnas.96.16.9124. Google Scholar

[16]

T. S. Gardner, M. Dolnik and J. J. Collins, A theory for controlling cell cycle dynamics using a reversibly binding inhibitor,, Proc. Natl. Acad. Sci. U.S.A., 95 (1998), 14190. doi: 10.1073/pnas.95.24.14190. Google Scholar

[17]

Y. Geng, W. Whoriskey, M. Y. Park, R. T. Bronson, R. H. Medema, T. Li, R. A. Weinberg and P. Sicinski, Rescue of cyclin d1 deficiency by knockin cyclin e,, Cell, 97 (1999), 767. doi: 10.1016/S0092-8674(00)80788-6. Google Scholar

[18]

Y. Geng, Q. Yu, E. Sicinska, M. Das, J. E. Schneider, S. Bhattacharya, W. M. Rideout, R. T. Bronson, H. Gardner and P. Sicinski, Cyclin e ablation in the mouse,, Cell, 114 (2003), 431. doi: 10.1016/S0092-8674(03)00645-7. Google Scholar

[19]

M. Glotzer, A. W. Murray and M. W. Kirschner, Cyclin is degraded by the ubiquitin pathway,, Nature, 349 (1991), 132. doi: 10.1038/349132a0. Google Scholar

[20]

A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase,, Proc. Natl. Acad. Sci. U.S.A., 88 (1991), 9107. doi: 10.1073/pnas.88.20.9107. Google Scholar

[21]

C. H. Golias, A. Charalabopoulos and K. Charalabopoulos, Cell proliferation and cell cycle control: A mini review,, Int. J. Clin. Pract., 58 (2004), 1134. doi: 10.1111/j.1742-1241.2004.00284.x. Google Scholar

[22]

D. Gong, J. R. Pomerening, J. W. Myers, C. Gustavsson, J. T. Jones, A. T. Hahn, T. Meyer and J. Ferrell, Cyclin a2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin b1,, Curr. Biol., 17 (2007), 85. doi: 10.1016/j.cub.2006.11.066. Google Scholar

[23]

J. W. Harper and S. J. Elledge, Skipping into the e2f1-destruction pathway,, Nat. Cell Biol., 1 (1999), 5. doi: 10.1038/8952. Google Scholar

[24]

L. H. Hartwell, Genetic control of the cell division cycle in yeast. ii. genes controlling dna replication and its initiation,, J. Mol. Biol., 59 (1971), 183. doi: 10.1016/0022-2836(71)90420-7. Google Scholar

[25]

L. H. Hartwell, J. Culotti and B. Reid, Genetic control of the cell-division cycle in yeast. i. detection of mutants,, Proc. Natl. Acad. Sci. U.S.A., 66 (1970), 352. doi: 10.1073/pnas.66.2.352. Google Scholar

[26]

A. Hershko, The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle,, Cell Death Differ., 12 (2005), 1191. Google Scholar

[27]

A. Hershko and A. Ciechanover, The ubiquitin system,, Annual Rev. Biochem., 67 (1998), 425. Google Scholar

[28]

I. Hoffmann, G. Draetta and E. Karsenti, Activation of the phosphatase activity of human cdc25a by a cdk2-cyclin e dependent phosphorylation at the g1/s transition,, Embo. J., 13 (1994), 4302. Google Scholar

[29]

K. Iwamoto, Y. Tashima, H. Hamada, Y. Eguchi and M. Okamoto, Mathematical modeling and sensitivity analysis of g1/s phase in the cell cycle including the dna-damage signal transduction pathway,, Biosystems, 94 (2008), 109. doi: 10.1016/j.biosystems.2008.05.016. Google Scholar

[30]

T. Jacks, A. Fazeli, E. M. Schmitt, R. T. Bronson, M. A. Goodell and R. A. Weinberg, Effects of an rb mutation in the mouse,, Nature, 359 (1992), 295. doi: 10.1038/359295a0. Google Scholar

[31]

S. Jirawatnotai, D. S. Moons, C. O. Stocco, R. Franks, D. B. Hales, G. Gibori and H. Kiyokawa, The cyclin-dependent kinase inhibitors p27kip1 and p21cip1 cooperate to restrict proliferative life span in differentiating ovarian cells,, J. Biol. Chem., 278 (2003), 17021. doi: 10.1074/jbc.M301206200. Google Scholar

[32]

M. B. Kastan and J. Bartek, Cell-cycle checkpoints and cancer,, Nature, 432 (2004), 316. doi: 10.1038/nature03097. Google Scholar

[33]

D. Knapp, L. Bhoite, D. J. Stillman and K. Nasmyth, The transcription factor swi5 regulates expression of the cyclin kinase inhibitor p40sic1,, Mol. Cell Biol., 16 (1996), 5701. Google Scholar

[34]

C. Koch and K. Nasmyth, Cell cycle regulated transcription in yeast,, Curr. Opin. Cell Biol., 6 (1994), 451. doi: 10.1016/0955-0674(94)90039-6. Google Scholar

[35]

D. M. Koepp, J. W. Harper and S. J. Elledge, How the cyclin became a cyclin: Regulated proteolysis in the cell cycle,, Cell, 97 (1999), 431. doi: 10.1016/S0092-8674(00)80753-9. Google Scholar

[36]

K. W. Kohn, Molecular interaction map of the mammalian cell cycle control and dna repair systems,, Mol. Biol. Cell, 10 (1999), 2703. Google Scholar

[37]

U. Kossatz, N. Dietrich, L. Zender, J. Buer, M. P. Manns and N. P. Malek, Skp2-dependent degradation of p27kip1 is essential for cell cycle progression,, Genes Dev., 18 (2004), 2602. doi: 10.1101/gad.321004. Google Scholar

[38]

O. Lavi and Y. Louzoun, What cycles the cell? - robust autonomous cell cycle models,, Math Med Biol, 26 (2009), 337. doi: 10.1093/imammb/dqp016. Google Scholar

[39]

J. Lisztwan, A. Marti, H. Sutterluty, M. Gstaiger, C. Wirbelauer and W. Krek, Association of human cul-1 and ubiquitin-conjugating enzyme cdc34 with the f-box protein p45(skp2): Evidence for evolutionary conservation in the subunit composition of the cdc34-scf pathway,, EMBO J., 17 (1998), 368. doi: 10.1093/emboj/17.2.368. Google Scholar

[40]

A. J. Lotka, "Elements of Physical Biology,", Williams and Wilkins, (1925). Google Scholar

[41]

J. W. Ludlow, C. L. Glendening, D. M. Livingston and J. A. DeCarprio, Specific enzymatic dephosphorylation of the retinoblastoma protein,, Mol. Cell Biol., 13 (1993), 367. Google Scholar

[42]

C. Lukas, C. S. Sorensen, E. Kramer, E. Santoni-Rugiu, C. Lindeneg, J. M. Peters, J. Bartek and J. Lukas, Accumulation of cyclin b1 requires e2f and cyclin-a-dependent rearrangement of the anaphase-promoting complex,, Nature, 401 (1999), 815. doi: 10.1038/44611. Google Scholar

[43]

M. Malumbres, R. Sotillo, D. Santamaria, J. Galan, A. Cerezo, S. Ortega, P. Dubus and M. Barbacid, Mammalian cells cycle without the d-type cyclin-dependent kinases cdk4 and cdk6,, Cell, 118 (2004), 493. doi: 10.1016/j.cell.2004.08.002. Google Scholar

[44]

A. Marti, C. Wirbelauer, M. Scheffner and W. Krek, Interaction between ubiquitin-protein ligase scfskp2 and e2f-1 underlies the regulation of e2f-1 degradation,, Nat. Cell Biol., 1 (1999), 14. doi: 10.1038/8984. Google Scholar

[45]

A. Montagnoli, F. Fiore, E. Eytan, A. C. Carrano, G. F. Draetta, A. Hershko and M. Pagano, Ubiquitination of p27 is regulated by cdk-dependent phosphorylation and trimeric complex formation,, Genes Dev., 13 (1999), 1181. doi: 10.1101/gad.13.9.1181. Google Scholar

[46]

D. O. Morgan, Regulation of the apc and the exit from mitosis,, Nat. Cell Biol., 1 (1999), 47. doi: 10.1038/10039. Google Scholar

[47]

M. C. Morris, A. Heitz, J. Mery, F. Heitz and G. Divita, An essential phosphorylation-site domain of human cdc25c interacts with both 14-3-3 and cyclins,, J. Biol. Chem., 275 (2000), 28849. doi: 10.1074/jbc.M002942200. Google Scholar

[48]

M. Murphy, M. G. Stinnakre, C. Senamaud-Beaufort, N. J. Winston, C. Sweeney, M. Kubelka, M. Carrington, C. Brechot and J. Sobczak-Thepot, Delayed early embryonic lethality following disruption of the murine cyclin a2 gene,, Nat. Genet., 15 (1997), 83. doi: 10.1038/ng0197-83. Google Scholar

[49]

K. Nakayama, N. Ishida, M. Shirane, A. Inomata, T. Inoue, N. Shishido, I. Horii, D. Y. Loh and K. Nakayama, Mice lacking p27(kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors,, Cell, 85 (1996), 707. doi: 10.1016/S0092-8674(00)81237-4. Google Scholar

[50]

K. I. Nakayama, S. Hatakeyama and K. Nakayama, Regulation of the cell cycle at the g1-s transition by proteolysis of cyclin e and p27kip1,, Biochem. Biophys. Res. Commun., 282 (2001), 853. doi: 10.1006/bbrc.2001.4627. Google Scholar

[51]

P. Nash, X. Tang, S. Orlicky, Q. Chen, F. B. Gertler, M. D. Mendenhall, F. Sicheri, T. Pawson and M. Tyers, Multisite phosphorylation of a cdk inhibitor sets a threshold for the onset of DNA replication,, Nature, 414 (2001), 514. doi: 10.1038/35107009. Google Scholar

[52]

R. Norel and Z. Agur, A model for the adjustment of the mitotic clock by cyclin and mpf levels,, Science, 251 (1991), 1076. doi: 10.1126/science.1825521. Google Scholar

[53]

P. Nurse, A long twentieth century of the cell cycle and beyond,, Cell, 100 (2000), 71. doi: 10.1016/S0092-8674(00)81684-0. Google Scholar

[54]

D. A. Orlando, C. Y. Lin, A. Bernard, J. Y. Wang, J. E. Socolar, E. S. Iversen, A. J. Hartemink and S. B. Haase, Global control of cell-cycle transcription by coupled cdk and network oscillators,, Nature, 453 (2008), 944. doi: 10.1038/nature06955. Google Scholar

[55]

M. Peter, The regulation of cyclin-dependent kinase inhibitors (ckis),, Prog. Cell Cycle Res., 3 (1997), 99. Google Scholar

[56]

J. M. Peters, Scf and apc: The yin and yang of cell cycle regulated proteolysis,, Curr. Opin. Cell Biol., 10 (1998), 759. doi: 10.1016/S0955-0674(98)80119-1. Google Scholar

[57]

B. Pfeuty and K. Kaneko, Minimal requirements for robust cell size control in eukaryotic cells,, Phys. Biol., 4 (2007), 194. doi: 10.1088/1478-3975/4/3/006. Google Scholar

[58]

S. Prinz, E. S. Hwang, R. Visintin and A. Amon, The regulation of cdc20 proteolysis reveals a role for apc components cdc23 and cdc27 during s-phase and early mitosis,, Curr. Biol., 8 (1998), 750. doi: 10.1016/S0960-9822(98)70298-2. Google Scholar

[59]

F. Puntoni and E. Villa-Moruzzi, Phosphorylation of protein phosphatase-1 isoforms by cdc2-cyclin b in vitro,, Mol. Cell. Biochem., 171 (1997), 115. doi: 10.1023/A:1006892103306. Google Scholar

[60]

Z. Qu, W. R. MacLellan and J. N. Weiss, Dynamics of the cell cycle: Checkpoints, sizers, and timers,, Biophys. J., 85 (2003), 3600. doi: 10.1016/S0006-3495(03)74778-X. Google Scholar

[61]

T. Reis and B. A. Edgar, Negative regulation of de2f1 by cyclin-dependent kinases controls cell cycle timing,, Cell, 117 (2004), 253. doi: 10.1016/S0092-8674(04)00247-8. Google Scholar

[62]

J. M. Roberts and C. J. Sherr, Bared essentials of cdk2 and cyclin E,, Nat. Genet., 35 (2003), 9. doi: 10.1038/ng1234. Google Scholar

[63]

J. Rudolph, Targeting the neighbor's pool,, Mol. Pharmacol., 66 (2004), 780. doi: 10.1124/mol.104.004788. Google Scholar

[64]

D. Santamaria, C. Barriere, A. Cerqueira, S. Hunt, C. Tardy, K. Newton, J. F. Caceres, P. Dubus, M. Malumbres and M. Barbacid, Cdk1 is sufficient to drive the mammalian cell cycle,, Nature, 448 (2007), 811. doi: 10.1038/nature06046. Google Scholar

[65]

C. J. Sherr and J. M. Roberts, Living with or without cyclins and cyclin-dependent kinases,, Genes Dev., 18 (2004), 2699. doi: 10.1101/gad.1256504. Google Scholar

[66]

P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge and R. A. Weinberg, Cyclin d1 provides a link between development and oncogenesis in the retina and breast,, Cell, 82 (1995), 621. doi: 10.1016/0092-8674(95)90034-9. Google Scholar

[67]

M. J. Solomon, M. Glotzer, T. H. Lee, M. Philippe and M. W. Kirschner, Cyclin activation of p34cdc2,, Cell, 63 (1990), 1013. doi: 10.1016/0092-8674(90)90504-8. Google Scholar

[68]

M. J. Solomon and P. Kaldis, Regulation of cdks by phosphorylation,, Results Probl. Cell Differ., 22 (1998), 79. Google Scholar

[69]

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein and B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization,, Mol. Biol. Cell, 9 (1998), 3273. Google Scholar

[70]

K. Sriram, G. Bernot and F. Kepes, A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle,, IET Syst. Biol., 1 (2007), 326. doi: 10.1049/iet-syb:20070018. Google Scholar

[71]

T. T. Su and J. Stumpff, Promiscuity rules? The dispensability of cyclin E and Cdk2,, Sci. STKE, 2004 (2004). doi: 10.1126/stke.2242004pe11. Google Scholar

[72]

M. Sugimoto, N. Martin, D. P. Wilks, K. Tamai, T. J. Huot, C. Pantoja, K. Okumura, M. Serrano and E. Hara, Activation of cyclin d1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1),, Oncogene, 21 (2002), 8067. doi: 10.1038/sj.onc.1206019. Google Scholar

[73]

S. Tamrakar, E. Rubin, and J. W. Ludlow, Role of prb dephosphorylation in cell cycle regulation,, Front Biosci., 5 (2000), 121. doi: 10.2741/Tamrakar. Google Scholar

[74]

O. Tetsu and F. McCormick, Proliferation of cancer cells despite Cdk2 inhibition,, Cancer Cell, 3 (2003), 233. doi: 10.1016/S1535-6108(03)00053-9. Google Scholar

[75]

J. E. Toettcher, A. Loewer, G. J. Ostheimer, M. B. Yaffe, B. Tidor and G. Lahav, Distinct mechanisms act in concert to mediate cell cycle arrest,, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 785. doi: 10.1073/pnas.0806196106. Google Scholar

[76]

J. J. Tyson and B. Novak, Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions,, J. Theor. Biol., 210 (2001), 249. doi: 10.1006/jtbi.2001.2293. Google Scholar

[77]

S. van den Heuvel and N. J. Dyson, Conserved functions of the prb and e2f families,, Nat. Rev. Mol. Cell Biol., 9 (2008), 713. doi: 10.1038/nrm2469. Google Scholar

[78]

H. C. Vodermaier, Apc/c and scf: Controlling each other and the cell cycle,, Curr. Biol., 14 (2004), 787. doi: 10.1016/j.cub.2004.09.020. Google Scholar

[79]

V. Volterra, "Animal Ecology,", Chapman R. N., (1931), 409. Google Scholar

[80]

R. Wasch and F. R. Cross, Apc-dependent proteolysis of the mitotic cyclin clb2 is essential for mitotic exit,, Nature, 418 (2002), 556. doi: 10.1038/nature00856. Google Scholar

[81]

J. Weinstein, Cell cycle-regulated expression, phosphorylation, and degradation of p55cdc. a mammalian homolog of cdc20/fizzy/slp1,, J. Biol. Chem., 272 (1997), 28501. doi: 10.1074/jbc.272.45.28501. Google Scholar

[82]

M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E. Alexander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown and D. Botstein, Identification of genes periodically expressed in the human cell cycle and their expression in tumors,, Mol. Biol. Cell, 13 (2002), 1977. Google Scholar

[83]

L. Wu, C. Timmers, B. Maiti, H. I. Saavedra, L. Sang, G. T. Chong, F. Nuckolls, P. Giangrande, F. A. Wright, S. J. Field, M. E. Greenberg, S. Orkin, J. R. Nevins, M. L. Robinson and G. Leone, The E2f1-3 transcription factors are essential for cellular proliferation,, Nature, 414 (2001), 457. doi: 10.1038/35106593. Google Scholar

[84]

M. Xu, K. A. Sheppard, C. Y. Peng, A. S. Yee and H. Piwnica-Worms, Cyclin a/Cdk2 binds directly to e2f-1 and inhibits the dna-binding activity of e2f-1/dp-1 by phosphorylation,, Mol. Cell Biol., 14 (1994), 8420. Google Scholar

[85]

K. Yang, M. Hitomi and D. W. Stacey, Variations in cyclin d1 levels through the cell cycle determine the proliferative fate of a cell,, Cell Div., 1 (2006). doi: 10.1186/1747-1028-1-32. Google Scholar

[86]

W. Zachariae and K. Nasmyth, Whose end is destruction: Cell division and the anaphase-promoting complex,, Genes Dev., 13 (1999), 2039. doi: 10.1101/gad.13.16.2039. Google Scholar

[87]

H. Zhang, R. Kobayashi, K. Galaktionov and D. Beach, P19skp1 and p45skp2 are essential elements of the cyclin A-CDK2 S phase kinase,, Cell, 82 (1995), 915. doi: 10.1016/0092-8674(95)90271-6. Google Scholar

[88]

J. Zhang, X. Dong, Y. Fujimoto and H. Okamura, Molecular signals of mammalian circadian clock,, Kobe J. Med. Sci., 50 (2004), 101. Google Scholar

[89]

L. Zhang and C. Wang, F-box protein skp2: A novel transcriptional target of e2f,, Oncogene, 25 (2006), 2615. doi: 10.1038/sj.onc.1209286. Google Scholar

[90]

P. Zhou and P. M. Howley, Ubiquitination and degradation of the substrate recognition subunits of scf ubiquitin-protein ligases,, Mol. Cell, 2 (1998), 571. doi: 10.1016/S1097-2765(00)80156-2. Google Scholar

show all references

References:
[1]

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, "Molecular Biology of the Cell,", fifth edition, (2007). Google Scholar

[2]

T. Bashir, N. V. Dorrello, V. Amador, D. Guardavaccaro and M. Pagano, Control of the scf(skp2-cks1) ubiquitin ligase by the apc/c(cdh1) ubiquitin ligase,, Nature, 428 (2004), 190. doi: 10.1038/nature02330. Google Scholar

[3]

D. Bech-Otschir, M. Seeger and W. Dubiel, The cop9 signalosome: At the interface between signal transduction and ubiquitin-dependent proteolysis,, J. Cell Sci., 115 (2002), 467. Google Scholar

[4]

C. Berthet, E. Aleem, V. Coppola, L. Tessarollo and P. Kaldis, Cdk2 knockout mice are viable,, Curr. Biol., 13 (2003), 1775. doi: 10.1016/j.cub.2003.09.024. Google Scholar

[5]

M. Bilodeau, H. Talarmin, G. Ilyin, C. Rescan, D. Glaise, S. Cariou, P. Loyer, C. Guguen-Guillouzo and G. Baffet, Skp2 induction and phosphorylation is associated with the late g1 phase of proliferating rat hepatocytes,, FEBS Lett, 452 (1999), 247. doi: 10.1016/S0014-5793(99)00629-8. Google Scholar

[6]

M. Brandeis, I. Rosewell, M. Carrington, T. Crompton, M. A. Jacobs, J. Kirk, J. Gannon and T. Hunt, Cyclin b2-null mice develop normally and are fertile whereas cyclin b1-null mice die in utero,, Proc. Natl. Acad. Sci. U.S.A., 95 (1998), 4344. doi: 10.1073/pnas.95.8.4344. Google Scholar

[7]

K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak and J. J. Tyson, Integrative analysis of cell cycle control in budding yeast,, Mol. Biol. Cell, 15 (2004), 3841. doi: 10.1091/mbc.E03-11-0794. Google Scholar

[8]

L. Chen, R. Wang, T. J. Kobayashi and K. Aihara, Dynamics of gene regulatory networks with cell division cycle,, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 70 (2004). doi: 10.1103/PhysRevE.70.011909. Google Scholar

[9]

M. Cheng, P. Olivier, J. A. Diehl, M. Fero, M. F. Roussel, J. M. Roberts and C. J. Sherr, The p21(cip1) and p27(kip1) cdk 'inhibitors' are essential activators of cyclin d-dependent kinases in murine fibroblasts,, Embo. J., 18 (1999), 1571. doi: 10.1093/emboj/18.6.1571. Google Scholar

[10]

S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O. Brown and I. Herskowitz, The transcriptional program of sporulation in budding yeast,, Science, 282 (1998), 699. doi: 10.1126/science.282.5389.699. Google Scholar

[11]

J. Culotti and L. H. Hartwell, Genetic control of the cell division cycle in yeast. 3. seven genes controlling nuclear division,, Exp. Cell Res., 67 (1971), 389. doi: 10.1016/0014-4827(71)90424-1. Google Scholar

[12]

S. J. D'Souza, A. Vespa, S. Murkherjee, A. Maher, A. Pajak and L. Dagnino, E2f-1 is essential for normal epidermal wound repair,, J. Biol. Chem., 277 (2002), 10626. doi: 10.1074/jbc.M111956200. Google Scholar

[13]

H. L. Ford and A. B. Pardee, Cancer and the cell cycle,, J. Cell Biochem., 32-33 (1999), 32. doi: 10.1002/(SICI)1097-4644(1999)75:32+<166::AID-JCB20>3.0.CO;2-J. Google Scholar

[14]

A. Fotovati, K. Nakayama and K. I. Nakayama, Impaired germ cell development due to compromised cell cycle progression in skp2-deficient mice,, Cell Div., 1 (2006). doi: 10.1186/1747-1028-1-4. Google Scholar

[15]

J. M. Galan and M. Peter, Ubiquitin-dependent degradation of multiple f-box proteins by an autocatalytic mechanism,, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 9124. doi: 10.1073/pnas.96.16.9124. Google Scholar

[16]

T. S. Gardner, M. Dolnik and J. J. Collins, A theory for controlling cell cycle dynamics using a reversibly binding inhibitor,, Proc. Natl. Acad. Sci. U.S.A., 95 (1998), 14190. doi: 10.1073/pnas.95.24.14190. Google Scholar

[17]

Y. Geng, W. Whoriskey, M. Y. Park, R. T. Bronson, R. H. Medema, T. Li, R. A. Weinberg and P. Sicinski, Rescue of cyclin d1 deficiency by knockin cyclin e,, Cell, 97 (1999), 767. doi: 10.1016/S0092-8674(00)80788-6. Google Scholar

[18]

Y. Geng, Q. Yu, E. Sicinska, M. Das, J. E. Schneider, S. Bhattacharya, W. M. Rideout, R. T. Bronson, H. Gardner and P. Sicinski, Cyclin e ablation in the mouse,, Cell, 114 (2003), 431. doi: 10.1016/S0092-8674(03)00645-7. Google Scholar

[19]

M. Glotzer, A. W. Murray and M. W. Kirschner, Cyclin is degraded by the ubiquitin pathway,, Nature, 349 (1991), 132. doi: 10.1038/349132a0. Google Scholar

[20]

A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase,, Proc. Natl. Acad. Sci. U.S.A., 88 (1991), 9107. doi: 10.1073/pnas.88.20.9107. Google Scholar

[21]

C. H. Golias, A. Charalabopoulos and K. Charalabopoulos, Cell proliferation and cell cycle control: A mini review,, Int. J. Clin. Pract., 58 (2004), 1134. doi: 10.1111/j.1742-1241.2004.00284.x. Google Scholar

[22]

D. Gong, J. R. Pomerening, J. W. Myers, C. Gustavsson, J. T. Jones, A. T. Hahn, T. Meyer and J. Ferrell, Cyclin a2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin b1,, Curr. Biol., 17 (2007), 85. doi: 10.1016/j.cub.2006.11.066. Google Scholar

[23]

J. W. Harper and S. J. Elledge, Skipping into the e2f1-destruction pathway,, Nat. Cell Biol., 1 (1999), 5. doi: 10.1038/8952. Google Scholar

[24]

L. H. Hartwell, Genetic control of the cell division cycle in yeast. ii. genes controlling dna replication and its initiation,, J. Mol. Biol., 59 (1971), 183. doi: 10.1016/0022-2836(71)90420-7. Google Scholar

[25]

L. H. Hartwell, J. Culotti and B. Reid, Genetic control of the cell-division cycle in yeast. i. detection of mutants,, Proc. Natl. Acad. Sci. U.S.A., 66 (1970), 352. doi: 10.1073/pnas.66.2.352. Google Scholar

[26]

A. Hershko, The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle,, Cell Death Differ., 12 (2005), 1191. Google Scholar

[27]

A. Hershko and A. Ciechanover, The ubiquitin system,, Annual Rev. Biochem., 67 (1998), 425. Google Scholar

[28]

I. Hoffmann, G. Draetta and E. Karsenti, Activation of the phosphatase activity of human cdc25a by a cdk2-cyclin e dependent phosphorylation at the g1/s transition,, Embo. J., 13 (1994), 4302. Google Scholar

[29]

K. Iwamoto, Y. Tashima, H. Hamada, Y. Eguchi and M. Okamoto, Mathematical modeling and sensitivity analysis of g1/s phase in the cell cycle including the dna-damage signal transduction pathway,, Biosystems, 94 (2008), 109. doi: 10.1016/j.biosystems.2008.05.016. Google Scholar

[30]

T. Jacks, A. Fazeli, E. M. Schmitt, R. T. Bronson, M. A. Goodell and R. A. Weinberg, Effects of an rb mutation in the mouse,, Nature, 359 (1992), 295. doi: 10.1038/359295a0. Google Scholar

[31]

S. Jirawatnotai, D. S. Moons, C. O. Stocco, R. Franks, D. B. Hales, G. Gibori and H. Kiyokawa, The cyclin-dependent kinase inhibitors p27kip1 and p21cip1 cooperate to restrict proliferative life span in differentiating ovarian cells,, J. Biol. Chem., 278 (2003), 17021. doi: 10.1074/jbc.M301206200. Google Scholar

[32]

M. B. Kastan and J. Bartek, Cell-cycle checkpoints and cancer,, Nature, 432 (2004), 316. doi: 10.1038/nature03097. Google Scholar

[33]

D. Knapp, L. Bhoite, D. J. Stillman and K. Nasmyth, The transcription factor swi5 regulates expression of the cyclin kinase inhibitor p40sic1,, Mol. Cell Biol., 16 (1996), 5701. Google Scholar

[34]

C. Koch and K. Nasmyth, Cell cycle regulated transcription in yeast,, Curr. Opin. Cell Biol., 6 (1994), 451. doi: 10.1016/0955-0674(94)90039-6. Google Scholar

[35]

D. M. Koepp, J. W. Harper and S. J. Elledge, How the cyclin became a cyclin: Regulated proteolysis in the cell cycle,, Cell, 97 (1999), 431. doi: 10.1016/S0092-8674(00)80753-9. Google Scholar

[36]

K. W. Kohn, Molecular interaction map of the mammalian cell cycle control and dna repair systems,, Mol. Biol. Cell, 10 (1999), 2703. Google Scholar

[37]

U. Kossatz, N. Dietrich, L. Zender, J. Buer, M. P. Manns and N. P. Malek, Skp2-dependent degradation of p27kip1 is essential for cell cycle progression,, Genes Dev., 18 (2004), 2602. doi: 10.1101/gad.321004. Google Scholar

[38]

O. Lavi and Y. Louzoun, What cycles the cell? - robust autonomous cell cycle models,, Math Med Biol, 26 (2009), 337. doi: 10.1093/imammb/dqp016. Google Scholar

[39]

J. Lisztwan, A. Marti, H. Sutterluty, M. Gstaiger, C. Wirbelauer and W. Krek, Association of human cul-1 and ubiquitin-conjugating enzyme cdc34 with the f-box protein p45(skp2): Evidence for evolutionary conservation in the subunit composition of the cdc34-scf pathway,, EMBO J., 17 (1998), 368. doi: 10.1093/emboj/17.2.368. Google Scholar

[40]

A. J. Lotka, "Elements of Physical Biology,", Williams and Wilkins, (1925). Google Scholar

[41]

J. W. Ludlow, C. L. Glendening, D. M. Livingston and J. A. DeCarprio, Specific enzymatic dephosphorylation of the retinoblastoma protein,, Mol. Cell Biol., 13 (1993), 367. Google Scholar

[42]

C. Lukas, C. S. Sorensen, E. Kramer, E. Santoni-Rugiu, C. Lindeneg, J. M. Peters, J. Bartek and J. Lukas, Accumulation of cyclin b1 requires e2f and cyclin-a-dependent rearrangement of the anaphase-promoting complex,, Nature, 401 (1999), 815. doi: 10.1038/44611. Google Scholar

[43]

M. Malumbres, R. Sotillo, D. Santamaria, J. Galan, A. Cerezo, S. Ortega, P. Dubus and M. Barbacid, Mammalian cells cycle without the d-type cyclin-dependent kinases cdk4 and cdk6,, Cell, 118 (2004), 493. doi: 10.1016/j.cell.2004.08.002. Google Scholar

[44]

A. Marti, C. Wirbelauer, M. Scheffner and W. Krek, Interaction between ubiquitin-protein ligase scfskp2 and e2f-1 underlies the regulation of e2f-1 degradation,, Nat. Cell Biol., 1 (1999), 14. doi: 10.1038/8984. Google Scholar

[45]

A. Montagnoli, F. Fiore, E. Eytan, A. C. Carrano, G. F. Draetta, A. Hershko and M. Pagano, Ubiquitination of p27 is regulated by cdk-dependent phosphorylation and trimeric complex formation,, Genes Dev., 13 (1999), 1181. doi: 10.1101/gad.13.9.1181. Google Scholar

[46]

D. O. Morgan, Regulation of the apc and the exit from mitosis,, Nat. Cell Biol., 1 (1999), 47. doi: 10.1038/10039. Google Scholar

[47]

M. C. Morris, A. Heitz, J. Mery, F. Heitz and G. Divita, An essential phosphorylation-site domain of human cdc25c interacts with both 14-3-3 and cyclins,, J. Biol. Chem., 275 (2000), 28849. doi: 10.1074/jbc.M002942200. Google Scholar

[48]

M. Murphy, M. G. Stinnakre, C. Senamaud-Beaufort, N. J. Winston, C. Sweeney, M. Kubelka, M. Carrington, C. Brechot and J. Sobczak-Thepot, Delayed early embryonic lethality following disruption of the murine cyclin a2 gene,, Nat. Genet., 15 (1997), 83. doi: 10.1038/ng0197-83. Google Scholar

[49]

K. Nakayama, N. Ishida, M. Shirane, A. Inomata, T. Inoue, N. Shishido, I. Horii, D. Y. Loh and K. Nakayama, Mice lacking p27(kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors,, Cell, 85 (1996), 707. doi: 10.1016/S0092-8674(00)81237-4. Google Scholar

[50]

K. I. Nakayama, S. Hatakeyama and K. Nakayama, Regulation of the cell cycle at the g1-s transition by proteolysis of cyclin e and p27kip1,, Biochem. Biophys. Res. Commun., 282 (2001), 853. doi: 10.1006/bbrc.2001.4627. Google Scholar

[51]

P. Nash, X. Tang, S. Orlicky, Q. Chen, F. B. Gertler, M. D. Mendenhall, F. Sicheri, T. Pawson and M. Tyers, Multisite phosphorylation of a cdk inhibitor sets a threshold for the onset of DNA replication,, Nature, 414 (2001), 514. doi: 10.1038/35107009. Google Scholar

[52]

R. Norel and Z. Agur, A model for the adjustment of the mitotic clock by cyclin and mpf levels,, Science, 251 (1991), 1076. doi: 10.1126/science.1825521. Google Scholar

[53]

P. Nurse, A long twentieth century of the cell cycle and beyond,, Cell, 100 (2000), 71. doi: 10.1016/S0092-8674(00)81684-0. Google Scholar

[54]

D. A. Orlando, C. Y. Lin, A. Bernard, J. Y. Wang, J. E. Socolar, E. S. Iversen, A. J. Hartemink and S. B. Haase, Global control of cell-cycle transcription by coupled cdk and network oscillators,, Nature, 453 (2008), 944. doi: 10.1038/nature06955. Google Scholar

[55]

M. Peter, The regulation of cyclin-dependent kinase inhibitors (ckis),, Prog. Cell Cycle Res., 3 (1997), 99. Google Scholar

[56]

J. M. Peters, Scf and apc: The yin and yang of cell cycle regulated proteolysis,, Curr. Opin. Cell Biol., 10 (1998), 759. doi: 10.1016/S0955-0674(98)80119-1. Google Scholar

[57]

B. Pfeuty and K. Kaneko, Minimal requirements for robust cell size control in eukaryotic cells,, Phys. Biol., 4 (2007), 194. doi: 10.1088/1478-3975/4/3/006. Google Scholar

[58]

S. Prinz, E. S. Hwang, R. Visintin and A. Amon, The regulation of cdc20 proteolysis reveals a role for apc components cdc23 and cdc27 during s-phase and early mitosis,, Curr. Biol., 8 (1998), 750. doi: 10.1016/S0960-9822(98)70298-2. Google Scholar

[59]

F. Puntoni and E. Villa-Moruzzi, Phosphorylation of protein phosphatase-1 isoforms by cdc2-cyclin b in vitro,, Mol. Cell. Biochem., 171 (1997), 115. doi: 10.1023/A:1006892103306. Google Scholar

[60]

Z. Qu, W. R. MacLellan and J. N. Weiss, Dynamics of the cell cycle: Checkpoints, sizers, and timers,, Biophys. J., 85 (2003), 3600. doi: 10.1016/S0006-3495(03)74778-X. Google Scholar

[61]

T. Reis and B. A. Edgar, Negative regulation of de2f1 by cyclin-dependent kinases controls cell cycle timing,, Cell, 117 (2004), 253. doi: 10.1016/S0092-8674(04)00247-8. Google Scholar

[62]

J. M. Roberts and C. J. Sherr, Bared essentials of cdk2 and cyclin E,, Nat. Genet., 35 (2003), 9. doi: 10.1038/ng1234. Google Scholar

[63]

J. Rudolph, Targeting the neighbor's pool,, Mol. Pharmacol., 66 (2004), 780. doi: 10.1124/mol.104.004788. Google Scholar

[64]

D. Santamaria, C. Barriere, A. Cerqueira, S. Hunt, C. Tardy, K. Newton, J. F. Caceres, P. Dubus, M. Malumbres and M. Barbacid, Cdk1 is sufficient to drive the mammalian cell cycle,, Nature, 448 (2007), 811. doi: 10.1038/nature06046. Google Scholar

[65]

C. J. Sherr and J. M. Roberts, Living with or without cyclins and cyclin-dependent kinases,, Genes Dev., 18 (2004), 2699. doi: 10.1101/gad.1256504. Google Scholar

[66]

P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge and R. A. Weinberg, Cyclin d1 provides a link between development and oncogenesis in the retina and breast,, Cell, 82 (1995), 621. doi: 10.1016/0092-8674(95)90034-9. Google Scholar

[67]

M. J. Solomon, M. Glotzer, T. H. Lee, M. Philippe and M. W. Kirschner, Cyclin activation of p34cdc2,, Cell, 63 (1990), 1013. doi: 10.1016/0092-8674(90)90504-8. Google Scholar

[68]

M. J. Solomon and P. Kaldis, Regulation of cdks by phosphorylation,, Results Probl. Cell Differ., 22 (1998), 79. Google Scholar

[69]

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein and B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization,, Mol. Biol. Cell, 9 (1998), 3273. Google Scholar

[70]

K. Sriram, G. Bernot and F. Kepes, A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle,, IET Syst. Biol., 1 (2007), 326. doi: 10.1049/iet-syb:20070018. Google Scholar

[71]

T. T. Su and J. Stumpff, Promiscuity rules? The dispensability of cyclin E and Cdk2,, Sci. STKE, 2004 (2004). doi: 10.1126/stke.2242004pe11. Google Scholar

[72]

M. Sugimoto, N. Martin, D. P. Wilks, K. Tamai, T. J. Huot, C. Pantoja, K. Okumura, M. Serrano and E. Hara, Activation of cyclin d1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1),, Oncogene, 21 (2002), 8067. doi: 10.1038/sj.onc.1206019. Google Scholar

[73]

S. Tamrakar, E. Rubin, and J. W. Ludlow, Role of prb dephosphorylation in cell cycle regulation,, Front Biosci., 5 (2000), 121. doi: 10.2741/Tamrakar. Google Scholar

[74]

O. Tetsu and F. McCormick, Proliferation of cancer cells despite Cdk2 inhibition,, Cancer Cell, 3 (2003), 233. doi: 10.1016/S1535-6108(03)00053-9. Google Scholar

[75]

J. E. Toettcher, A. Loewer, G. J. Ostheimer, M. B. Yaffe, B. Tidor and G. Lahav, Distinct mechanisms act in concert to mediate cell cycle arrest,, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 785. doi: 10.1073/pnas.0806196106. Google Scholar

[76]

J. J. Tyson and B. Novak, Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions,, J. Theor. Biol., 210 (2001), 249. doi: 10.1006/jtbi.2001.2293. Google Scholar

[77]

S. van den Heuvel and N. J. Dyson, Conserved functions of the prb and e2f families,, Nat. Rev. Mol. Cell Biol., 9 (2008), 713. doi: 10.1038/nrm2469. Google Scholar

[78]

H. C. Vodermaier, Apc/c and scf: Controlling each other and the cell cycle,, Curr. Biol., 14 (2004), 787. doi: 10.1016/j.cub.2004.09.020. Google Scholar

[79]

V. Volterra, "Animal Ecology,", Chapman R. N., (1931), 409. Google Scholar

[80]

R. Wasch and F. R. Cross, Apc-dependent proteolysis of the mitotic cyclin clb2 is essential for mitotic exit,, Nature, 418 (2002), 556. doi: 10.1038/nature00856. Google Scholar

[81]

J. Weinstein, Cell cycle-regulated expression, phosphorylation, and degradation of p55cdc. a mammalian homolog of cdc20/fizzy/slp1,, J. Biol. Chem., 272 (1997), 28501. doi: 10.1074/jbc.272.45.28501. Google Scholar

[82]

M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E. Alexander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown and D. Botstein, Identification of genes periodically expressed in the human cell cycle and their expression in tumors,, Mol. Biol. Cell, 13 (2002), 1977. Google Scholar

[83]

L. Wu, C. Timmers, B. Maiti, H. I. Saavedra, L. Sang, G. T. Chong, F. Nuckolls, P. Giangrande, F. A. Wright, S. J. Field, M. E. Greenberg, S. Orkin, J. R. Nevins, M. L. Robinson and G. Leone, The E2f1-3 transcription factors are essential for cellular proliferation,, Nature, 414 (2001), 457. doi: 10.1038/35106593. Google Scholar

[84]

M. Xu, K. A. Sheppard, C. Y. Peng, A. S. Yee and H. Piwnica-Worms, Cyclin a/Cdk2 binds directly to e2f-1 and inhibits the dna-binding activity of e2f-1/dp-1 by phosphorylation,, Mol. Cell Biol., 14 (1994), 8420. Google Scholar

[85]

K. Yang, M. Hitomi and D. W. Stacey, Variations in cyclin d1 levels through the cell cycle determine the proliferative fate of a cell,, Cell Div., 1 (2006). doi: 10.1186/1747-1028-1-32. Google Scholar

[86]

W. Zachariae and K. Nasmyth, Whose end is destruction: Cell division and the anaphase-promoting complex,, Genes Dev., 13 (1999), 2039. doi: 10.1101/gad.13.16.2039. Google Scholar

[87]

H. Zhang, R. Kobayashi, K. Galaktionov and D. Beach, P19skp1 and p45skp2 are essential elements of the cyclin A-CDK2 S phase kinase,, Cell, 82 (1995), 915. doi: 10.1016/0092-8674(95)90271-6. Google Scholar

[88]

J. Zhang, X. Dong, Y. Fujimoto and H. Okamura, Molecular signals of mammalian circadian clock,, Kobe J. Med. Sci., 50 (2004), 101. Google Scholar

[89]

L. Zhang and C. Wang, F-box protein skp2: A novel transcriptional target of e2f,, Oncogene, 25 (2006), 2615. doi: 10.1038/sj.onc.1209286. Google Scholar

[90]

P. Zhou and P. M. Howley, Ubiquitination and degradation of the substrate recognition subunits of scf ubiquitin-protein ligases,, Mol. Cell, 2 (1998), 571. doi: 10.1016/S1097-2765(00)80156-2. Google Scholar

[1]

Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661

[2]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[3]

Lars Grüne, Vryan Gil Palma. Robustness of performance and stability for multistep and updated multistep MPC schemes. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4385-4414. doi: 10.3934/dcds.2015.35.4385

[4]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

[5]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[6]

Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211

[7]

Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193

[8]

Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483

[9]

A. Marigo. Robustness of square networks. Networks & Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537

[10]

Mihaela Negreanu, J. Ignacio Tello. On a Parabolic-ODE system of chemotaxis. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 279-292. doi: 10.3934/dcdss.2020016

[11]

Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111

[12]

Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271-296. doi: 10.3934/jgm.2012.4.271

[13]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[14]

Kazuyuki Yagasaki. Degenerate resonances in forced oscillators. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 423-438. doi: 10.3934/dcdsb.2003.3.423

[15]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[18]

Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks & Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429

[19]

Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011

[20]

Jinzhi Lei, Frederic Y. M. Wan, Arthur D. Lander, Qing Nie. Robustness of signaling gradient in drosophila wing imaginal disc. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 835-866. doi: 10.3934/dcdsb.2011.16.835

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]