# American Institute of Mathematical Sciences

2011, 8(1): 183-197. doi: 10.3934/mbe.2011.8.183

## A note on the use of optimal control on a discrete time model of influenza dynamics

 1 Program in Computational Science, The University of Texas at El Paso, El Paso, TX 79968-0514, United States 2 Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 3 Program in Computational Science, Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968-0514, United States 4 Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287

Received  June 2010 Revised  September 2010 Published  January 2011

A discrete time Susceptible - Asymptomatic - Infectious - Treated - Recovered (SAITR) model is introduced in the context of influenza transmission. We evaluate the potential effect of control measures such as social distancing and antiviral treatment on the dynamics of a single outbreak. Optimal control theory is applied to identify the best way of reducing morbidity and mortality at a minimal cost. The problem is solved by using a discrete version of Pontryagin's maximum principle. Numerical results show that dual strategies have stronger impact in the reduction of the final epidemic size.
Citation: Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183
##### References:
 [1] L. J. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1. doi: 10.1016/S0025-5564(99)00047-4. Google Scholar [2] R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1992). Google Scholar [3] J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment,, J. Theor. Biol., 253 (2003), 118. doi: 10.1016/j.jtbi.2008.02.026. Google Scholar [4] H. Behncke, Optimal control of deterministic epidemics,, Opt. Control Appl. Meth., 21 (2000), 269. doi: 10.1002/oca.678. Google Scholar [5] F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer-Verlag, (2001). Google Scholar [6] F. Brauer, Z. Feng, and C. Castillo-Chavez, Discrete epidemic models,, Math. Biosc. $&$ Eng., 7 (2010), 1. Google Scholar [7] P. Brewer, Economic effects of pandemic flu in a recession, 2009,, http://www.wisebread.com/economic-effects-of-pandemic-flu-in-a-recession., (). Google Scholar [8] C. A. Burdet and S. P. Sethi, On the maximum principle for a class of discrete dynamical systems with Lags,, Journal of Optimization Theory and Applications, 19 (1976), 445. doi: 10.1007/BF00941486. Google Scholar [9] C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics,, Nonlinear Analysis, 47 (2001), 4753. doi: 10.1016/S0362-546X(01)00587-9. Google Scholar [10] C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with simple and complex population dynamics,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases (eds., 125 (2001), 153. Google Scholar [11] M. Chan, World now at the start of 2009 influenza pandemic, 11 Jun. 2009., http://who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html, (). Google Scholar [12] G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions,, J. Theor. Biol., 241 (2006), 193. doi: 10.1016/j.jtbi.2005.11.026. Google Scholar [13] G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data,, J. Roy. Soc. Interface, 4 (2007), 55. doi: 10.1098/rsif.2006.0161. Google Scholar [14] W. Ding, L. Gross, K. Langston, S. Lenhart and L. Real, Rabies in racoons: Optimal control for a discrete time model on a spatial grid,, J. Biol. Dynamics, 1 (2007), 307. doi: 10.1080/17513750701605515. Google Scholar [15] R. Durrett and S. A. Levin, The importance of being discrete (and spatial),, Theoret. Popul. Biol., 46 (1994). doi: 10.1006/tpbi.1994.1032. Google Scholar [16] N. M. Ferguson, D. A. T. Cumminangs, C. Fraser, J. C. Cajika, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic,, Nature, 442 (2006), 448. doi: 10.1038/nature04795. Google Scholar [17] H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev, 42 (2000), 599. doi: 10.1137/S0036144500371907. Google Scholar [18] R. Hilschera and V. Zeidanb, Discrete optimal control: The accessory problem and necessary optimality conditions,, Journal of Mathematical Analysis and Applications, 243 (2000), 429. doi: 10.1006/jmaa.1999.6679. Google Scholar [19] C. Hwang and L. Fan, A Discrete version of Pontryagin's maximum principle,, Operations Research, 15 (1967), 139. doi: 10.1287/opre.15.1.139. Google Scholar [20] E. Jung, S. Lenhart, V. Protopopescu and C. F. Babbs, Optimal control theory applied to a difference equation model for cardiopulmonary resuscitation,, Mathematical Models and methods in Applied Sciences, 15 (2005), 1519. doi: 10.1142/S0218202505000856. Google Scholar [21] M. I. Kamien and N. L. Schwarz, "Dynamic Optimization. The Calculus of Variations and Optimal Control in Economics And Management,", Amsterdam: North-Holland, (1991). Google Scholar [22] S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation,, J. Theor. Biol., 265 (2010), 136. doi: 10.1016/j.jtbi.2010.04.003. Google Scholar [23] S. Lenhart and J. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall, (2007). Google Scholar [24] B. Marinkovic, Optimality conditions for discrete optimal control problems,, Optimization Methods & Software Archive, 22 (2007), 959. Google Scholar [25] C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza,, Nature, 432 (2004), 904. doi: 10.1038/nature03063. Google Scholar [26] J. C. Monterrubio, Short-term economic impacts of influenza A(H1N1) and government reaction on the Mexican tourism industry: an analysis of the media,, International Journal of Tourism Policy, 3 (2010), 1. doi: 10.1504/IJTP.2010.031599. Google Scholar [27] J. Nocedal, "Numerical Optimization,", Springer, (2006). Google Scholar [28] M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains,, Theor. Pop. Biol., 71 (2007), 20. Google Scholar [29] L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes,", Wiley, (1962). Google Scholar [30] Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment,, Bull. Math. Biol., 72 (2009), 1. doi: 10.1007/s11538-009-9435-5. Google Scholar [31] S. P. Sethi and G. L. Thompson, "Optimal Control Theory: Applications to Management Science and Economics,", Second Edition, (2000). Google Scholar [32] J. M. Tchuenche, S. A. Kamis, F. B. Agusto and S. C. Mpesche, "Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination,", Acta Biotheoretica, (2010). Google Scholar [33] S. M. Tracht, S. Del Valle and J. Hyman, Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1), PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0009018. Google Scholar [34] Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China,, Math. and Computer Modelling, 40 (2004), 1491. doi: 10.1016/j.mcm.2005.01.007. Google Scholar

show all references

##### References:
 [1] L. J. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1. doi: 10.1016/S0025-5564(99)00047-4. Google Scholar [2] R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1992). Google Scholar [3] J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment,, J. Theor. Biol., 253 (2003), 118. doi: 10.1016/j.jtbi.2008.02.026. Google Scholar [4] H. Behncke, Optimal control of deterministic epidemics,, Opt. Control Appl. Meth., 21 (2000), 269. doi: 10.1002/oca.678. Google Scholar [5] F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer-Verlag, (2001). Google Scholar [6] F. Brauer, Z. Feng, and C. Castillo-Chavez, Discrete epidemic models,, Math. Biosc. $&$ Eng., 7 (2010), 1. Google Scholar [7] P. Brewer, Economic effects of pandemic flu in a recession, 2009,, http://www.wisebread.com/economic-effects-of-pandemic-flu-in-a-recession., (). Google Scholar [8] C. A. Burdet and S. P. Sethi, On the maximum principle for a class of discrete dynamical systems with Lags,, Journal of Optimization Theory and Applications, 19 (1976), 445. doi: 10.1007/BF00941486. Google Scholar [9] C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics,, Nonlinear Analysis, 47 (2001), 4753. doi: 10.1016/S0362-546X(01)00587-9. Google Scholar [10] C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with simple and complex population dynamics,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases (eds., 125 (2001), 153. Google Scholar [11] M. Chan, World now at the start of 2009 influenza pandemic, 11 Jun. 2009., http://who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html, (). Google Scholar [12] G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions,, J. Theor. Biol., 241 (2006), 193. doi: 10.1016/j.jtbi.2005.11.026. Google Scholar [13] G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data,, J. Roy. Soc. Interface, 4 (2007), 55. doi: 10.1098/rsif.2006.0161. Google Scholar [14] W. Ding, L. Gross, K. Langston, S. Lenhart and L. Real, Rabies in racoons: Optimal control for a discrete time model on a spatial grid,, J. Biol. Dynamics, 1 (2007), 307. doi: 10.1080/17513750701605515. Google Scholar [15] R. Durrett and S. A. Levin, The importance of being discrete (and spatial),, Theoret. Popul. Biol., 46 (1994). doi: 10.1006/tpbi.1994.1032. Google Scholar [16] N. M. Ferguson, D. A. T. Cumminangs, C. Fraser, J. C. Cajika, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic,, Nature, 442 (2006), 448. doi: 10.1038/nature04795. Google Scholar [17] H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev, 42 (2000), 599. doi: 10.1137/S0036144500371907. Google Scholar [18] R. Hilschera and V. Zeidanb, Discrete optimal control: The accessory problem and necessary optimality conditions,, Journal of Mathematical Analysis and Applications, 243 (2000), 429. doi: 10.1006/jmaa.1999.6679. Google Scholar [19] C. Hwang and L. Fan, A Discrete version of Pontryagin's maximum principle,, Operations Research, 15 (1967), 139. doi: 10.1287/opre.15.1.139. Google Scholar [20] E. Jung, S. Lenhart, V. Protopopescu and C. F. Babbs, Optimal control theory applied to a difference equation model for cardiopulmonary resuscitation,, Mathematical Models and methods in Applied Sciences, 15 (2005), 1519. doi: 10.1142/S0218202505000856. Google Scholar [21] M. I. Kamien and N. L. Schwarz, "Dynamic Optimization. The Calculus of Variations and Optimal Control in Economics And Management,", Amsterdam: North-Holland, (1991). Google Scholar [22] S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation,, J. Theor. Biol., 265 (2010), 136. doi: 10.1016/j.jtbi.2010.04.003. Google Scholar [23] S. Lenhart and J. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall, (2007). Google Scholar [24] B. Marinkovic, Optimality conditions for discrete optimal control problems,, Optimization Methods & Software Archive, 22 (2007), 959. Google Scholar [25] C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza,, Nature, 432 (2004), 904. doi: 10.1038/nature03063. Google Scholar [26] J. C. Monterrubio, Short-term economic impacts of influenza A(H1N1) and government reaction on the Mexican tourism industry: an analysis of the media,, International Journal of Tourism Policy, 3 (2010), 1. doi: 10.1504/IJTP.2010.031599. Google Scholar [27] J. Nocedal, "Numerical Optimization,", Springer, (2006). Google Scholar [28] M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains,, Theor. Pop. Biol., 71 (2007), 20. Google Scholar [29] L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes,", Wiley, (1962). Google Scholar [30] Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment,, Bull. Math. Biol., 72 (2009), 1. doi: 10.1007/s11538-009-9435-5. Google Scholar [31] S. P. Sethi and G. L. Thompson, "Optimal Control Theory: Applications to Management Science and Economics,", Second Edition, (2000). Google Scholar [32] J. M. Tchuenche, S. A. Kamis, F. B. Agusto and S. C. Mpesche, "Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination,", Acta Biotheoretica, (2010). Google Scholar [33] S. M. Tracht, S. Del Valle and J. Hyman, Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1), PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0009018. Google Scholar [34] Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China,, Math. and Computer Modelling, 40 (2004), 1491. doi: 10.1016/j.mcm.2005.01.007. Google Scholar
 [1] Eunha Shim. Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1615-1634. doi: 10.3934/mbe.2013.10.1615 [2] Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311 [3] Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045 [4] Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006 [5] Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067 [6] Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639 [7] Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971 [8] Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009 [9] Cristiana J. Silva, Delfim F. M. Torres. Optimal control strategies for tuberculosis treatment: A case study in Angola. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 601-617. doi: 10.3934/naco.2012.2.601 [10] Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621 [11] Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369 [12] Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469 [13] Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587 [14] Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267 [15] Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097 [16] Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez. Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences & Engineering, 2011, 8 (1) : 21-48. doi: 10.3934/mbe.2011.8.21 [17] Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i [18] Ellina Grigorieva, Evgenii Khailov. Chattering and its approximation in control of psoriasis treatment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2251-2280. doi: 10.3934/dcdsb.2019094 [19] Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151 [20] Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547

2018 Impact Factor: 1.313