• Previous Article
    Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits
  • MBE Home
  • This Issue
  • Next Article
    An elementary approach to modeling drug resistance in cancer
2010, 7(4): 919-922. doi: 10.3934/mbe.2010.7.919

Rotating antibiotics does not minimize selection for resistance

1. 

Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland, Switzerland, Switzerland

Received  August 2010 Revised  September 2010 Published  October 2010

N/A
Citation: Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences & Engineering, 2010, 7 (4) : 919-922. doi: 10.3934/mbe.2010.7.919
References:
[1]

R. Beardmore and R. Peñal-Miller, Rotating antibiotics selects optimally against antibiotic resistance,, Mathematical Biosciences and Engineering, 7 (2010), 527. doi: doi:10.3934/mbe.2010.7.527. Google Scholar

[2]

S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106. doi: doi:10.1073/pnas.94.22.12106. Google Scholar

[3]

C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285. doi: doi:10.1073/pnas.0402298101. Google Scholar

show all references

References:
[1]

R. Beardmore and R. Peñal-Miller, Rotating antibiotics selects optimally against antibiotic resistance,, Mathematical Biosciences and Engineering, 7 (2010), 527. doi: doi:10.3934/mbe.2010.7.527. Google Scholar

[2]

S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106. doi: doi:10.1073/pnas.94.22.12106. Google Scholar

[3]

C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285. doi: doi:10.1073/pnas.0402298101. Google Scholar

[1]

Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527

[2]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[3]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[4]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[5]

Zhenzhen Chen, Sze-Bi Hsu, Ya-Tang Yang. The continuous morbidostat: A chemostat with controlled drug application to select for drug resistance mutants. Communications on Pure & Applied Analysis, 2020, 19 (1) : 203-220. doi: 10.3934/cpaa.2020011

[6]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[7]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[8]

Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038

[9]

Robert E. Beardmore, Rafael Peña-Miller. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences & Engineering, 2010, 7 (4) : 923-933. doi: 10.3934/mbe.2010.7.923

[10]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[11]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[12]

Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks & Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149

[13]

Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509

[14]

John Boscoh H. Njagarah, Farai Nyabadza. Modelling the role of drug barons on the prevalence of drug epidemics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 843-860. doi: 10.3934/mbe.2013.10.843

[15]

Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553

[16]

S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999

[17]

Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191

[18]

Donato Patrizia, Andrey Piatnitski. On the effective interfacial resistance through rough surfaces. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1295-1310. doi: 10.3934/cpaa.2010.9.1295

[19]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[20]

Guihong Fan, Gail S. K. Wolkowicz. Analysis of a model of nutrient driven self-cycling fermentation allowing unimodal response functions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 801-831. doi: 10.3934/dcdsb.2007.8.801

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]