
Previous Article
Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic
 MBE Home
 This Issue

Next Article
Epidemic models with differential susceptibility and staged progression and their dynamics
Mathematical analysis of a model for HIVmalaria coinfection
1.  Department of Applied Mathematics, National University of Science and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe 
2.  Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 
3.  Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa 
4.  Mathematics Department, University of Dar es Salaam, P.O.Box 35062, Dar es Salaam, Tanzania 
[1] 
Georgi Kapitanov. A double agestructured model of the coinfection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 2340. doi: 10.3934/mbe.2015.12.23 
[2] 
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malariaschistosomiasis coinfection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377405. doi: 10.3934/mbe.2017024 
[3] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[4] 
Yijun Lou, Li Liu, Daozhou Gao. Modeling coinfection of Ixodes tickborne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13011316. doi: 10.3934/mbe.2017067 
[5] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[6] 
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 23652387. doi: 10.3934/dcdsb.2017121 
[7] 
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525536. doi: 10.3934/mbe.2015.12.525 
[8] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[9] 
Jinliang Wang, Lijuan Guan. Global stability for a HIV1 infection model with cellmediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 297302. doi: 10.3934/dcdsb.2012.17.297 
[10] 
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569594. doi: 10.3934/mbe.2018026 
[11] 
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 9951001. doi: 10.3934/mbe.2014.11.995 
[12] 
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis codynamics. Discrete & Continuous Dynamical Systems  B, 2009, 12 (4) : 827864. doi: 10.3934/dcdsb.2009.12.827 
[13] 
Stephen Pankavich, Deborah Shutt. An inhost model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913922. doi: 10.3934/proc.2015.0913 
[14] 
Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 103119. doi: 10.3934/dcdsb.2016.21.103 
[15] 
Rachid Ouifki, Gareth Witten. A model of HIV1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems  B, 2007, 8 (1) : 229240. doi: 10.3934/dcdsb.2007.8.229 
[16] 
M. Hadjiandreou, Raul Conejeros, Vassilis S. Vassiliadis. Towards a longterm model construction for the dynamic simulation of HIV infection. Mathematical Biosciences & Engineering, 2007, 4 (3) : 489504. doi: 10.3934/mbe.2007.4.489 
[17] 
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 67716782. doi: 10.3934/dcdsb.2019166 
[18] 
LihIng W. Roeger, Z. Feng, Carlos CastilloChávez. Modeling TB and HIV coinfections. Mathematical Biosciences & Engineering, 2009, 6 (4) : 815837. doi: 10.3934/mbe.2009.6.815 
[19] 
Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915935. doi: 10.3934/mbe.2012.9.915 
[20] 
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449469. doi: 10.3934/mbe.2014.11.449 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]