2008, 5(4): 859-875. doi: 10.3934/mbe.2008.5.859

Variation in risk in single-species discrete-time models

1. 

Department of Ecology, Evolution and Marine Biology, University of California at Santa Barbara, CA 93106-9610, United States, United States

Received  January 2008 Revised  June 2008 Published  October 2008

Simple, discrete-time, population models typically exhibit complex dynamics, like cyclic oscillations and chaos, when the net reproductive rate, $R$, is large. These traditional models generally do not incorporate variability in juvenile "risk,'' defined to be a measure of a juvenile's vulnerability to density-dependent mortality. For a broad class of discrete-time models we show that variability in risk across juveniles tends to stabilize the equilibrium. We consider both density-independent and density-dependent risk, and for each, we identify appropriate shapes of the distribution of risk that will stabilize the equilibrium for all values of $R$. In both cases, it is the shape of the distribution of risk and not the amount of variation in risk that is crucial for stability.
Citation: Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859
[1]

James Sandefur. A unifying approach to discrete single-species populations models. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 493-508. doi: 10.3934/dcdsb.2017194

[2]

Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191

[3]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[4]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[5]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[6]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[7]

Wei Feng. Dynamics in 30species preadtor-prey models with time delays. Conference Publications, 2007, 2007 (Special) : 364-372. doi: 10.3934/proc.2007.2007.364

[8]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[9]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[10]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[11]

Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123

[12]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[13]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[14]

Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355

[15]

Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327

[16]

Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

[17]

B. E. Ainseba, W. E. Fitzgibbon, M. Langlais, J. J. Morgan. An application of homogenization techniques to population dynamics models. Communications on Pure & Applied Analysis, 2002, 1 (1) : 19-33. doi: 10.3934/cpaa.2002.1.19

[18]

Robert Carlson. Myopic models of population dynamics on infinite networks. Networks & Heterogeneous Media, 2014, 9 (3) : 477-499. doi: 10.3934/nhm.2014.9.477

[19]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[20]

David M. Chan, Matt McCombs, Sarah Boegner, Hye Jin Ban, Suzanne L. Robertson. Extinction in discrete, competitive, multi-species patch models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1583-1590. doi: 10.3934/dcdsb.2015.20.1583

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]