
Previous Article
Global stability analysis for SEIS models with n latent classes
 MBE Home
 This Issue

Next Article
A dominant predator, a predator, and a prey
A storage model with random release rate for modeling exposure to food contaminants
1.  Modal'X  Université Paris X & CREST  LS, Universié Paris X, Bât. G, 200 avenue de la république, 92001 Nanterre, France 
2.  LTCI  UMR 5141 Telecom Paris / CNRS & Mét@risk  INRA, Telecom Paris  TSI, rue Barrault, 75634 Paris Cedex 13, France 
3.  Mét@risk  INRA & ISMT  HKUST, Hong Kong University of Science and Technology, ISMT, Clear Water Bay, HONG KONG, China 
[1] 
Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717741. doi: 10.3934/jimo.2014.10.717 
[2] 
SzeBi Hsu, Christopher A. Klausmeier, ChiuJu Lin. Analysis of a model of two parallel food chains. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 337359. doi: 10.3934/dcdsb.2009.12.337 
[3] 
Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinitedimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417459. doi: 10.3934/nhm.2017019 
[4] 
Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 10351059. doi: 10.3934/mbe.2011.8.1035 
[5] 
Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems  S, 2012, 5 (6) : 11471194. doi: 10.3934/dcdss.2012.5.1147 
[6] 
Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos. A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 325354. doi: 10.3934/mbe.2011.8.325 
[7] 
Wei Feng, Nicole Rocco, Michael Freeze, Xin Lu. Mathematical analysis on an extended RosenzweigMacArthur model of tritrophic food chain. Discrete & Continuous Dynamical Systems  S, 2014, 7 (6) : 12151230. doi: 10.3934/dcdss.2014.7.1215 
[8] 
Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phasefield model describing grain growth. Discrete & Continuous Dynamical Systems  B, 2014, 19 (7) : 22272246. doi: 10.3934/dcdsb.2014.19.2227 
[9] 
Xianlong Fu, Dongmei Zhu. Stability results for a sizestructured population model with delayed birth process. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 109131. doi: 10.3934/dcdsb.2013.18.109 
[10] 
Stelian Ion, Gabriela Marinoschi. A selforganizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems  B, 2017, 22 (2) : 383405. doi: 10.3934/dcdsb.2017018 
[11] 
Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 9891005. doi: 10.3934/dcdsb.2019002 
[12] 
Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the splitstep theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 695717. doi: 10.3934/dcdsb.2018203 
[13] 
Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505522. doi: 10.3934/mbe.2008.5.505 
[14] 
Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625653. doi: 10.3934/mbe.2017036 
[15] 
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and sizestructured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637655. doi: 10.3934/cpaa.2016.15.637 
[16] 
Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a sizestructured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 19751998. doi: 10.3934/dcdsb.2016032 
[17] 
Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis  analysis of stability with respect to delays. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1935. doi: 10.3934/mbe.2013.10.19 
[18] 
Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733752. doi: 10.3934/mbe.2011.8.733 
[19] 
Hongshan Ren. Stability analysis of a simplified model for the control of testosterone secretion. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 729738. doi: 10.3934/dcdsb.2004.4.729 
[20] 
Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975999. doi: 10.3934/mbe.2017051 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]