2007, 4(4): 699-710. doi: 10.3934/mbe.2007.4.699

Global analysis of discrete-time SI and SIS epidemic models

1. 

Department of Applied Mathematics and Physics, Air Force Engineering University, Xi'an 710051, China

2. 

Department of Mathematics, Xi’an Jiaotong University, Xi’an, 710049

3. 

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2

Received  February 2007 Revised  July 2007 Published  August 2007

Discrete-time SI and SIS models formulated as the discretization of a continuous-time model may exhibit behavior different from that of the continuous-time model such as period-doubling and chaotic behavior unless the step size in the model is sufficiently small. Some new discrete-time SI and SIS epidemic models with vital dynamics are formulated and analyzed. These new models do not exhibit period doubling and chaotic behavior and are thus better approximations to continuous models. However, their reproduction numbers and therefore their asymptotic behavior can differ somewhat from that of the corresponding continuous-time model.
Citation: Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699
[1]

John E. Franke, Abdul-Aziz Yakubu. Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385-408. doi: 10.3934/mbe.2011.8.385

[2]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[3]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[4]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019112

[5]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[6]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[7]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[8]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[9]

Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361

[10]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[11]

Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019007

[12]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[13]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[14]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[15]

Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123

[16]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[17]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[18]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[19]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[20]

S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]