2005, 2(3): 487-498. doi: 10.3934/mbe.2005.2.487

Interactions of Neanderthals and Modern Humans: What Can Be Inferred from Mitochondrial DNA?

1. 

Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

2. 

Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77005, United States

Received  January 2005 Revised  July 2005 Published  August 2005

This paper reviews the state-of-the-art knowledge concerning the relationship between Neanderthals and Upper Paleolithic modern humans. The branching-process method is applied to infer the upper limit of hypothetical Neanderthal admixture, consistent with the evidence based on mitochondrial DNA sequences of contemporary modern humans, as well as Neanderthal and early modern European H. sapiens fossils. As a result, a maximum value of 15% admixture is obtained. This estimate is discussed in the context of its consequences for the two competing theories of modern human origin.
Citation: Krzysztof A. Cyran, Marek Kimmel. Interactions of Neanderthals and Modern Humans: What Can Be Inferred from Mitochondrial DNA?. Mathematical Biosciences & Engineering, 2005, 2 (3) : 487-498. doi: 10.3934/mbe.2005.2.487
[1]

Messoud Efendiev, Mitsuharu Ôtani, Hermann J. Eberl. Mathematical analysis of an in vivo model of mitochondrial swelling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4131-4158. doi: 10.3934/dcds.2017176

[2]

Diana M. Thomas, Lynn Vandemuelebroeke, Kenneth Yamaguchi. A mathematical evolution model for phytoremediation of metals. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 411-422. doi: 10.3934/dcdsb.2005.5.411

[3]

Bashar Ibrahim. Mathematical analysis and modeling of DNA segregation mechanisms. Mathematical Biosciences & Engineering, 2018, 15 (2) : 429-440. doi: 10.3934/mbe.2018019

[4]

Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022

[5]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[6]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[7]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[8]

Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155

[9]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

[10]

Azucena Álvarez, Francisco R. Romero, José M. Romero, Juan F. R. Archilla. Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 995-1006. doi: 10.3934/dcdss.2011.4.995

[11]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[12]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[13]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[14]

Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3047-3071. doi: 10.3934/cpaa.2013.12.3047

[15]

Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1141-1165. doi: 10.3934/cpaa.2014.13.1141

[16]

Pierre-A. Vuillermot. On the time evolution of Bernstein processes associated with a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1073-1090. doi: 10.3934/dcdsb.2018142

[17]

Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221

[18]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[19]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[20]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]