2005, 2(2): 279-288. doi: 10.3934/mbe.2005.2.279

The Dynamics of the Schoener-Polis-Holt model of Intra-Guild Predation

1. 

Department of Mathematics, Providence College, Providence, Rhode Island 02918, United States

2. 

Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, United States

Received  October 2004 Revised  March 2005 Published  March 2005

Intraguild predation occurs when one species (the intraguild predator) predates on and competes with another species (the intraguild prey). A classic model of this interaction was introduced by Gary Polis and Robert Holt building on a model of competing species by Thomas Schoener. A global analysis reveals that this model exhibits generically six dynamics: extinction of one or both species; coexistence about a globally stable equilibrium; contingent exclusion in which the first established species prevents the establishment of the other species; contingent coexistence in which coexistence or displacement of the intraguild prey depend on initial conditions; exclusion of the intraguild prey; and exclusion of the intraguild predator. Implications for biological control and community ecology are discussed.
Citation: Eric Ruggieri, Sebastian J. Schreiber. The Dynamics of the Schoener-Polis-Holt model of Intra-Guild Predation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 279-288. doi: 10.3934/mbe.2005.2.279
[1]

Hua Nie, Sze-Bi Hsu, Feng-Bin Wang. Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019194

[2]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[3]

Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641

[4]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[5]

Guohong Zhang, Xiaoli Wang. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3755-3786. doi: 10.3934/dcdsb.2018076

[6]

Maria Paola Cassinari, Maria Groppi, Claudio Tebaldi. Effects of predation efficiencies on the dynamics of a tritrophic food chain. Mathematical Biosciences & Engineering, 2007, 4 (3) : 431-456. doi: 10.3934/mbe.2007.4.431

[7]

Jean-Jacques Kengwoung-Keumo. Dynamics of two phytoplankton populations under predation. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1319-1336. doi: 10.3934/mbe.2014.11.1319

[8]

Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585

[9]

Feng Rao, Carlos Castillo-Chavez, Yun Kang. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1401-1423. doi: 10.3934/mbe.2018064

[10]

Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85

[11]

Christopher M. Kribs-Zaleta. Sharpness of saturation in harvesting and predation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 719-742. doi: 10.3934/mbe.2009.6.719

[12]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[13]

Tomás Caraballo, Juan L. G. Guirao. New trends on nonlinear dynamics and its applications. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : i-ii. doi: 10.3934/dcdss.2015.8.6i

[14]

Mark J. Ablowitz, Terry S. Haut, Theodoros P. Horikis, Sean D. Nixon, Yi Zhu. Nonlinear wave dynamics: From lasers to fluids. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 923-955. doi: 10.3934/dcdss.2011.4.923

[15]

Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161

[16]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[17]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[18]

S. R.-J. Jang, J. Baglama, P. Seshaiyer. Intratrophic predation in a simple food chain with fluctuating nutrient. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 335-352. doi: 10.3934/dcdsb.2005.5.335

[19]

Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235

[20]

David Aleja, Julián López-Gómez. Some paradoxical effects of the advection on a class of diffusive equations in Ecology. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3031-3056. doi: 10.3934/dcdsb.2014.19.3031

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]