# American Institute of Mathematical Sciences

• Previous Article
Turing instabilities and pattern formation in a benthic nutrient-microorganism system
• MBE Home
• This Issue
• Next Article
Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection
2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95

## Controlling a model for bone marrow dynamics in cancer chemotherapy

 1 Department of Mathematics and Statistics, Southern Illinois University at Edwardsville, Edwardsville, IL 62026-1653, United States 2 Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899, United States

Received  February 2004 Revised  March 2004 Published  March 2004

This paper analyzes a mathematical model for the growth of bone marrow cells under cell-cycle-speci c cancer chemotherapy originally proposed by Fister and Panetta [8]. The model is formulated as an optimal control problem with control representing the drug dosage (respectively its eff ect) and objective of Bolza type depending on the control linearly, a so-called $L^1$-objective. We apply the Maximum Principle, followed by high-order necessary conditions for optimality of singular arcs and give sufficient conditions for optimality based on the method of characteristics. Singular controls are eliminated as candidates for optimality, and easily veri able conditions for strong local optimality of bang-bang controls are formulated in the form of transversality conditions at switching surfaces. Numerical simulations are given.
Citation: Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95
 [1] Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443 [2] Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611 [3] Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279 [4] Gengsheng Wang, Yubiao Zhang. Decompositions and bang-bang properties. Mathematical Control & Related Fields, 2017, 7 (1) : 73-170. doi: 10.3934/mcrf.2017005 [5] Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544 [6] Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561 [7] Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547 [8] Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563 [9] Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 [10] M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511 [11] Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803 [12] Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040 [13] Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581 [14] Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981 [15] Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083 [16] Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031 [17] Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100 [18] Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311 [19] Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007 [20] Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409

2018 Impact Factor: 1.313