• Previous Article
    An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems
  • KRM Home
  • This Issue
  • Next Article
    Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws
August  2019, 12(4): 909-922. doi: 10.3934/krm.2019034

Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel

1. 

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8–10, 1040 Wien, Austria

2. 

School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, China

3. 

Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78705, USA

Received  October 2018 Revised  January 2019 Published  May 2019

Fund Project: The first author acknowledges partial support from the Austrian Science Fund (FWF), grants P27352 and P30000, the second author is supported by NSF grants DMS-1522184, DMS-1819012 and DMS-1107291: RNMS KI-Net, NSFC grants No. 31571071 and No. 11871297, the third author is supported by the funding DOE–Simulation Center for Runaway Electron Avoidance and Mitigation, project No. DE-SC0016283

In [L. Liu and S. Jin, Multiscale Model. Simult., 16, 1085-1114, 2018], spectral convergence and long-time decay of the numerical solution towards the global equilibrium of the stochastic Galerkin approximation for the Boltzmann equation with random inputs in the initial data and collision kernel for hard potentials and Maxwellian molecules under Grad's angular cutoff were established using the hypocoercive properties of the collisional kinetic model. One assumption for the random perturbation of the collision kernel is that the perturbation is in the order of the Knudsen number, which can be very small in the fluid dynamical regime. In this article, we remove this smallness assumption, and establish the same results but now for random perturbations of the collision kernel that can be of order one. The new analysis relies on the establishment of a spectral gap for the numerical collision operator.

Citation: Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034
References:
[1]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Elsevier, 2000.

[2]

M. Briant, From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: A quantitative error estimate, Journal of Differential Equations, 259 (2015), 6072-6141. doi: 10.1016/j.jde.2015.07.022.

[3]

C. Cercignani, The Boltzmann equation in the whole space, in The Boltzmann Equation and Its Applications, Springer, 1988, 40–103. doi: 10.1007/978-1-4612-1039-9.

[4]

E. S. DausA. JüngelC. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568. doi: 10.1137/15M1017934.

[5]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Inventiones mathematicae, 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[6]

R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3094-6.

[7]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Communications on Pure and Applied Mathematics, 59 (2006), 626-687. doi: 10.1002/cpa.20121.

[8]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Archive for Rational Mechanics and Analysis, 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.

[9]

J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), 150-168. doi: 10.1016/j.jcp.2016.03.047.

[10]

______, Uncertainty quantification for kinetic equations, in Uncertainty Quantification for Hyperbolic and Kinetic Equations, vol. 14 of SEMA SIMAI Springer Ser., Springer, Cham, 2017,193–229. doi: 10.1007/978-3-319-67110-9_6.

[11]

S. Jin, J.-G. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method, Res. Math. Sci., 4 (2017), 25pp. doi: 10.1186/s40687-017-0105-1.

[12]

Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA J. Uncertain. Quantif., 5 (2017), 1193-1219. doi: 10.1137/16M1106675.

[13]

L. Liu, Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling, Kinet. Relat. Models, 11 (2018), 1139-1156. doi: 10.3934/krm.2018044.

[14]

______, A stochastic asymptotic-preserving scheme for the bipolar semiconductor BoltzmannPoisson system with random inputs and diffusive scalings, J. Comput. Phys., 376 (2019), 634–659. doi: 10.1016/j.jcp.2018.09.055.

[15]

L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs, Multiscale Model. Simul., 16 (2018), 1085-1114. doi: 10.1137/17M1151730.

[16]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348. doi: 10.1080/03605300600635004.

[17]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998. doi: 10.1088/0951-7715/19/4/011.

[18]

R. Shu and S. Jin, Uniform regularity in the random space and spectral accuracy of the stochastic Galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, ESAIM Math. Model. Numer. Anal., 52 (2018), 1651-1678. doi: 10.1051/m2an/2018024.

[19]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[20]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.

[21] D. Xiu, Numerical Methods for Stochastic Computations, Princeton University Press, Princeton, New Jersey, 2010.
[22]

D. Xiu and J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys., 228 (2009), 266-281. doi: 10.1016/j.jcp.2008.09.008.

show all references

References:
[1]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Elsevier, 2000.

[2]

M. Briant, From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: A quantitative error estimate, Journal of Differential Equations, 259 (2015), 6072-6141. doi: 10.1016/j.jde.2015.07.022.

[3]

C. Cercignani, The Boltzmann equation in the whole space, in The Boltzmann Equation and Its Applications, Springer, 1988, 40–103. doi: 10.1007/978-1-4612-1039-9.

[4]

E. S. DausA. JüngelC. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568. doi: 10.1137/15M1017934.

[5]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Inventiones mathematicae, 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[6]

R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3094-6.

[7]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Communications on Pure and Applied Mathematics, 59 (2006), 626-687. doi: 10.1002/cpa.20121.

[8]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Archive for Rational Mechanics and Analysis, 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.

[9]

J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), 150-168. doi: 10.1016/j.jcp.2016.03.047.

[10]

______, Uncertainty quantification for kinetic equations, in Uncertainty Quantification for Hyperbolic and Kinetic Equations, vol. 14 of SEMA SIMAI Springer Ser., Springer, Cham, 2017,193–229. doi: 10.1007/978-3-319-67110-9_6.

[11]

S. Jin, J.-G. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method, Res. Math. Sci., 4 (2017), 25pp. doi: 10.1186/s40687-017-0105-1.

[12]

Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA J. Uncertain. Quantif., 5 (2017), 1193-1219. doi: 10.1137/16M1106675.

[13]

L. Liu, Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling, Kinet. Relat. Models, 11 (2018), 1139-1156. doi: 10.3934/krm.2018044.

[14]

______, A stochastic asymptotic-preserving scheme for the bipolar semiconductor BoltzmannPoisson system with random inputs and diffusive scalings, J. Comput. Phys., 376 (2019), 634–659. doi: 10.1016/j.jcp.2018.09.055.

[15]

L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs, Multiscale Model. Simul., 16 (2018), 1085-1114. doi: 10.1137/17M1151730.

[16]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348. doi: 10.1080/03605300600635004.

[17]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998. doi: 10.1088/0951-7715/19/4/011.

[18]

R. Shu and S. Jin, Uniform regularity in the random space and spectral accuracy of the stochastic Galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, ESAIM Math. Model. Numer. Anal., 52 (2018), 1651-1678. doi: 10.1051/m2an/2018024.

[19]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[20]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.

[21] D. Xiu, Numerical Methods for Stochastic Computations, Princeton University Press, Princeton, New Jersey, 2010.
[22]

D. Xiu and J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys., 228 (2009), 266-281. doi: 10.1016/j.jcp.2008.09.008.

[1]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[2]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[3]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[4]

Seung-Yeal Ha, Shi Jin, Jinwook Jung. A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks & Heterogeneous Media, 2019, 14 (2) : 317-340. doi: 10.3934/nhm.2019013

[5]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019041

[6]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[7]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[8]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[9]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[10]

Ramzi Alsaedi. Perturbation effects for the minimal surface equation with multiple variable exponents. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 139-150. doi: 10.3934/dcdss.2019010

[11]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[12]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[13]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[14]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[15]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[16]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[17]

Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048

[18]

Tomás Caraballo, Maria-José Garrido-Atienza, Javier López-de-la-Cruz, Alain Rapaport. Modeling and analysis of random and stochastic input flows in the chemostat model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-24. doi: 10.3934/dcdsb.2018280

[19]

Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics & Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018

[20]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (11)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]