August  2019, 12(4): 829-884. doi: 10.3934/krm.2019032

Well-posedness of Cauchy problem for Landau equation in critical Besov space

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China

2. 

Université de Rouen, CNRS UMR 6085, Laboratoire de Mathématiques, Saint-Etienne du Rouvray, 76801, France

3. 

School of Mathematics and Statistics, South-Central University for Nationalities, 430074, Wuhan, China

* Corresponding author: Hao-Guang Li

Received  July 2018 Published  May 2019

Fund Project: The first author is supported by the China Scholarship Council(CSC). The second author is supported by the Natural Science Foundation of China (11701578). The research of C.-J. Xu is supported by"The Fundamental Research Funds for Central Universities of China". The research of J. Xu is partially supported by the National Natural Science Foundation of China (11871274) and the Fundamental Research Funds for the Central Universities (NE2015005)

We study the Cauchy problem for the inhomogeneous non linear Landau equation with Maxwellian molecules. In perturbation framework, we establish the global existence of solution in spatially critical Besov spaces. Precisely, if the initial datum is a a small perturbation of the equilibrium distribution in the Chemin-Lerner space $\widetilde L_v^2\left( {B_{2,1}^{3/2}} \right)$, then the Cauchy problem of Landau equation admits a global solution belongs to $\widetilde L_t^\infty \widetilde L_v^2\left( {B_{2,1}^{3/2}} \right)$. The spectral property of Landau operator enables us to develop new trilinear estimates, which leads to the global energy estimate.

Citation: Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032
References:
[1]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123. doi: 10.1007/s00205-010-0290-1.

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys, 304 (2011), 513-581. doi: 10.1007/s00220-011-1242-9.

[3]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅱ, Global existence for hard potential, Anal. Appl., 9 (2011), 113-134. doi: 10.1142/S0219530511001777.

[4]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661. doi: 10.1007/s00205-011-0432-0.

[5]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅰ, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010. doi: 10.1016/j.jfa.2011.10.007.

[6]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[7]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841. doi: 10.4171/RMI/436.

[8]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7 (1988), 111-233.

[9]

K. Carrapatoso, Exponential convergence to equalilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805. doi: 10.1016/j.bulsci.2014.12.002.

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271. doi: 10.1007/s00205-010-0306-x.

[11]

J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50. doi: 10.1007/BF02791256.

[12]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328. doi: 10.1006/jdeq.1995.1131.

[13]

Q.-L. ChenC.-X. Miao and Z.-F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224. doi: 10.1002/cpa.20325.

[14]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614. doi: 10.1007/s002220000078.

[15]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90. doi: 10.1007/s00205-016-1067-y.

[16]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512.

[17]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials . H-theorem theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298. doi: 10.1080/03605300008821513.

[18]

R.-J. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_{\xi}(H^N_x)$, J. Differential Equations, 244 (2008), 3204-3234. doi: 10.1016/j.jde.2007.11.006.

[19]

R.-J. DuanS.-Q. Liu and J. Xu, Global well-posedness in spatially critical Besov space for the Boltzmann Equation, Arch. Ration. Mech. Anal., 220 (2016), 711-745. doi: 10.1007/s00205-015-0940-4.

[20]

M.-P. Gualdani, S. Mischler and C. Mouhot, Factorization of non-symmetric operators and exponential $H$-theorem, M$\acute{e}$m. Soc. Math. Fr., 153 (2017), 137pp.

[21]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[22]

L. Hsiao and H.-J. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math., 65 (2007), 281-315. doi: 10.1090/S0033-569X-07-01053-8.

[23]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648. doi: 10.3934/krm.2013.6.625.

[24]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831. doi: 10.1016/j.jde.2013.10.001.

[25]

H.-G. Li and C.-J. Xu, The Cauchy problem for the radially symmetric homogeneous Boltzmann equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, J. Differential Equations, 263 (2017), 5120-5150. doi: 10.1016/j.jde.2017.06.010.

[26]

H.-G. Li and C.-J. Xu, Cauchy problem for the spatially homogeneous Landau equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, Siam J. Math. Anal., 51 (2019), 532-564. doi: 10.1137/17M115116X.

[27]

Y. MorimotoK. Pravda-Starov and C.-J. Xu, A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation, Kinet. Relat. Models, 6 (2013), 715-727. doi: 10.3934/krm.2013.6.715.

[28]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.

[29]

Y. Morimoto and S. Sakamoto, Global solutions in the critical Besov space for the non-cutoff Boltzmann equation, J. Differential Equations, 261 (2016), 4073-4134. doi: 10.1016/j.jde.2016.06.017.

[30]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348. doi: 10.1080/03605300600635004.

[31]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983. doi: 10.1142/S0218202598000433.

[32]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[33]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Differential Equations, 1 (1996), 793-816.

[34]

J. Xu and S. Kawashima, Global classical solutions for partially dissipative hyperbolic system of balance laws, Arch. Ration. Mech. Anal., 211 (2014), 513-553. doi: 10.1007/s00205-013-0679-8.

show all references

References:
[1]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123. doi: 10.1007/s00205-010-0290-1.

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys, 304 (2011), 513-581. doi: 10.1007/s00220-011-1242-9.

[3]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅱ, Global existence for hard potential, Anal. Appl., 9 (2011), 113-134. doi: 10.1142/S0219530511001777.

[4]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661. doi: 10.1007/s00205-011-0432-0.

[5]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅰ, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010. doi: 10.1016/j.jfa.2011.10.007.

[6]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[7]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841. doi: 10.4171/RMI/436.

[8]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7 (1988), 111-233.

[9]

K. Carrapatoso, Exponential convergence to equalilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805. doi: 10.1016/j.bulsci.2014.12.002.

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271. doi: 10.1007/s00205-010-0306-x.

[11]

J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50. doi: 10.1007/BF02791256.

[12]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328. doi: 10.1006/jdeq.1995.1131.

[13]

Q.-L. ChenC.-X. Miao and Z.-F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224. doi: 10.1002/cpa.20325.

[14]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614. doi: 10.1007/s002220000078.

[15]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90. doi: 10.1007/s00205-016-1067-y.

[16]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512.

[17]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials . H-theorem theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298. doi: 10.1080/03605300008821513.

[18]

R.-J. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_{\xi}(H^N_x)$, J. Differential Equations, 244 (2008), 3204-3234. doi: 10.1016/j.jde.2007.11.006.

[19]

R.-J. DuanS.-Q. Liu and J. Xu, Global well-posedness in spatially critical Besov space for the Boltzmann Equation, Arch. Ration. Mech. Anal., 220 (2016), 711-745. doi: 10.1007/s00205-015-0940-4.

[20]

M.-P. Gualdani, S. Mischler and C. Mouhot, Factorization of non-symmetric operators and exponential $H$-theorem, M$\acute{e}$m. Soc. Math. Fr., 153 (2017), 137pp.

[21]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[22]

L. Hsiao and H.-J. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math., 65 (2007), 281-315. doi: 10.1090/S0033-569X-07-01053-8.

[23]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648. doi: 10.3934/krm.2013.6.625.

[24]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831. doi: 10.1016/j.jde.2013.10.001.

[25]

H.-G. Li and C.-J. Xu, The Cauchy problem for the radially symmetric homogeneous Boltzmann equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, J. Differential Equations, 263 (2017), 5120-5150. doi: 10.1016/j.jde.2017.06.010.

[26]

H.-G. Li and C.-J. Xu, Cauchy problem for the spatially homogeneous Landau equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, Siam J. Math. Anal., 51 (2019), 532-564. doi: 10.1137/17M115116X.

[27]

Y. MorimotoK. Pravda-Starov and C.-J. Xu, A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation, Kinet. Relat. Models, 6 (2013), 715-727. doi: 10.3934/krm.2013.6.715.

[28]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.

[29]

Y. Morimoto and S. Sakamoto, Global solutions in the critical Besov space for the non-cutoff Boltzmann equation, J. Differential Equations, 261 (2016), 4073-4134. doi: 10.1016/j.jde.2016.06.017.

[30]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348. doi: 10.1080/03605300600635004.

[31]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983. doi: 10.1142/S0218202598000433.

[32]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[33]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Differential Equations, 1 (1996), 793-816.

[34]

J. Xu and S. Kawashima, Global classical solutions for partially dissipative hyperbolic system of balance laws, Arch. Ration. Mech. Anal., 211 (2014), 513-553. doi: 10.1007/s00205-013-0679-8.

[1]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[2]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[3]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[4]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[5]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[6]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[7]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[8]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[9]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[10]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[11]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[12]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[13]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[14]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[15]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[16]

Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences & Engineering, 2011, 8 (3) : 659-676. doi: 10.3934/mbe.2011.8.659

[17]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[18]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[19]

Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103

[20]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (32)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]