August  2019, 12(4): 765-789. doi: 10.3934/krm.2019030

Effect of abrupt change of the wall temperature in the kinetic theory

Department of Mathematics, National Cheng Kung University, Taiwan

Received  May 2018 Published  May 2019

Fund Project: The author is supported by MOST Grant 106-2115-M-006-009-MY2

We consider a semi-infinite expanse of a rarefied gas bounded by an infinite plane wall. The temperature of the wall is $ T_0 $, and the gas is initially in equilibrium with density $ \rho_0 $ and temperature $ T_0 $. The temperature of the wall is suddenly changed to $ T_w $ at time $ t = 0 $ and is kept at $ T_w $ afterward. We study the quantitative short time behavior of the gas in response to the abrupt change of the wall temperature on the basis of the linearized Boltzmann equation. Our approach is based on a straightforward calculation of the exact formulas derived by Duhamel's integral. Our method allows us to establish the pointwise estimates of the microscopic distribution and the macroscopic variables in short time. We show that the short-time solution consists of the free molecular flow and its perturbation, which exhibits logarithmic singularities along the characteristic line and on the boundary.

Citation: Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic & Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030
References:
[1]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107. doi: 10.3934/krm.2011.4.87.

[2]

L. ArkerydR. EspositoR. Marra and A. Nouri, Ghost effect by curvature in planar couette flow, Kinet. Relat. Models, 4 (2011), 109-138. doi: 10.3934/krm.2011.4.109.

[3]

L. ArkerydR. EspositoR. Marra and A. Nouri, Stability for Rayleigh enard convective solutions of the Boltzmann equation, Arch. Rational Mech. Anal, 198 (2010), 125-187. doi: 10.1007/s00205-010-0292-z.

[4]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated Lq -solutions and hydrodynamic limits, J. Stat. Phys, 118 (2005), 849-881. doi: 10.1007/s10955-004-2708-3.

[5]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[6]

C.-C. ChenI.-K. ChenT.-P. Liu and Y. Sone, Thermal transpiration for the linearized Boltzmann equation, Commun. Pure Appl. Math, 60 (2007), 147-163. doi: 10.1002/cpa.20167.

[7]

R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys, 323 (2013), 177-239. doi: 10.1007/s00220-013-1766-2.

[8]

R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), Art. 1,119 pp, https://doi.org/10.1007/s40818-017-0037-5. doi: 10.1007/s40818-017-0037-5.

[9]

R. EspositoJ. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab, Commun. Math. Phys, 160 (1994), 49-80. doi: 10.1007/BF02099789.

[10]

H. Grad, Asymptotic theory of the Boltzmann equation, Ⅱ, Int. Symp. on Rarefied Gas Dynamics, Third Symp., 1 (1962), 26-59.

[11]

H.-W. KuoT.-P. Liu and S. E. Noh, Mixture Lemma, Bulletin, Inst. Math., Academia Sinica (N.S.), 5 (2010), 1-10.

[12]

H.-W. Kuo, The initial layer for Rayleigh problem, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 137-170. doi: 10.3934/dcdsb.2011.15.137.

[13]

H.-W. KuoT.-P. Liu and L.-C. Tsai, Free molecular flow with boundary effect, Comm. Math. Phys., 318 (2013), 375-409. doi: 10.1007/s00220-013-1662-9.

[14]

H.-W. KuoT.-P. Liu and L.-C. Tsai, Equilibrating effects of boundary and collision in rarefied gases, Comm. Math. Phys., 328 (2014), 421-480. doi: 10.1007/s00220-014-2042-9.

[15]

H.-W. Kuo, Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, J. Stat. Phys., 161 (2015), 743-800. doi: 10.1007/s10955-015-1355-1.

[16]

H.-W. Kuo, Asymptotic behavior for Rayleigh problem based on kinetic theory, J. Stat. Phys., 166 (2017), 1247-1275. doi: 10.1007/s10955-017-1717-y.

[17]

T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997. doi: 10.1007/s00205-013-0640-x.

[18]

Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem, Phys. Fluids, 7 (1964), 470-471. doi: 10.1063/1.1711221.

[19]

Y. Sone, Effect of sudden change of wall temperature in rarefied gas, J. Phys. Soc. Japan, 20 (1965), 222-229. doi: 10.1143/JPSJ.20.222.

[20]

Y. Sone, Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh user Boston, Boston, MA, 2007. doi: 10.1007/978-0-8176-4573-1.

[21]

T. TsujiK. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat. Phys., 140 (2010), 518-543. doi: 10.1007/s10955-010-9997-5.

[22]

S. Ukai and K. Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle, I. Existence, Arch. Rational Mech. Anal., 84 (1983), 249-291. doi: 10.1007/BF00281521.

[23]

S.-H. Yu, Stochastic formulation for the initial-boundary value problems of the Boltzmann equation, Arch. Ration. Mech. Anal., 192 (2009), 217-274. doi: 10.1007/s00205-008-0139-z.

show all references

References:
[1]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107. doi: 10.3934/krm.2011.4.87.

[2]

L. ArkerydR. EspositoR. Marra and A. Nouri, Ghost effect by curvature in planar couette flow, Kinet. Relat. Models, 4 (2011), 109-138. doi: 10.3934/krm.2011.4.109.

[3]

L. ArkerydR. EspositoR. Marra and A. Nouri, Stability for Rayleigh enard convective solutions of the Boltzmann equation, Arch. Rational Mech. Anal, 198 (2010), 125-187. doi: 10.1007/s00205-010-0292-z.

[4]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated Lq -solutions and hydrodynamic limits, J. Stat. Phys, 118 (2005), 849-881. doi: 10.1007/s10955-004-2708-3.

[5]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[6]

C.-C. ChenI.-K. ChenT.-P. Liu and Y. Sone, Thermal transpiration for the linearized Boltzmann equation, Commun. Pure Appl. Math, 60 (2007), 147-163. doi: 10.1002/cpa.20167.

[7]

R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys, 323 (2013), 177-239. doi: 10.1007/s00220-013-1766-2.

[8]

R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), Art. 1,119 pp, https://doi.org/10.1007/s40818-017-0037-5. doi: 10.1007/s40818-017-0037-5.

[9]

R. EspositoJ. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab, Commun. Math. Phys, 160 (1994), 49-80. doi: 10.1007/BF02099789.

[10]

H. Grad, Asymptotic theory of the Boltzmann equation, Ⅱ, Int. Symp. on Rarefied Gas Dynamics, Third Symp., 1 (1962), 26-59.

[11]

H.-W. KuoT.-P. Liu and S. E. Noh, Mixture Lemma, Bulletin, Inst. Math., Academia Sinica (N.S.), 5 (2010), 1-10.

[12]

H.-W. Kuo, The initial layer for Rayleigh problem, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 137-170. doi: 10.3934/dcdsb.2011.15.137.

[13]

H.-W. KuoT.-P. Liu and L.-C. Tsai, Free molecular flow with boundary effect, Comm. Math. Phys., 318 (2013), 375-409. doi: 10.1007/s00220-013-1662-9.

[14]

H.-W. KuoT.-P. Liu and L.-C. Tsai, Equilibrating effects of boundary and collision in rarefied gases, Comm. Math. Phys., 328 (2014), 421-480. doi: 10.1007/s00220-014-2042-9.

[15]

H.-W. Kuo, Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, J. Stat. Phys., 161 (2015), 743-800. doi: 10.1007/s10955-015-1355-1.

[16]

H.-W. Kuo, Asymptotic behavior for Rayleigh problem based on kinetic theory, J. Stat. Phys., 166 (2017), 1247-1275. doi: 10.1007/s10955-017-1717-y.

[17]

T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997. doi: 10.1007/s00205-013-0640-x.

[18]

Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem, Phys. Fluids, 7 (1964), 470-471. doi: 10.1063/1.1711221.

[19]

Y. Sone, Effect of sudden change of wall temperature in rarefied gas, J. Phys. Soc. Japan, 20 (1965), 222-229. doi: 10.1143/JPSJ.20.222.

[20]

Y. Sone, Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh user Boston, Boston, MA, 2007. doi: 10.1007/978-0-8176-4573-1.

[21]

T. TsujiK. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat. Phys., 140 (2010), 518-543. doi: 10.1007/s10955-010-9997-5.

[22]

S. Ukai and K. Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle, I. Existence, Arch. Rational Mech. Anal., 84 (1983), 249-291. doi: 10.1007/BF00281521.

[23]

S.-H. Yu, Stochastic formulation for the initial-boundary value problems of the Boltzmann equation, Arch. Ration. Mech. Anal., 192 (2009), 217-274. doi: 10.1007/s00205-008-0139-z.

[1]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[2]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[3]

Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137

[4]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

[5]

Léo Glangetas, Mohamed Najeme. Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 407-427. doi: 10.3934/krm.2013.6.407

[6]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[7]

Bernard Brighi, Tewfik Sari. Blowing-up coordinates for a similarity boundary layer equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 929-948. doi: 10.3934/dcds.2005.12.929

[8]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[9]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

[10]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[11]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[12]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[13]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[14]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic & Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[15]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[16]

Hui Yin, Huijiang Zhao. Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space. Kinetic & Related Models, 2009, 2 (3) : 521-550. doi: 10.3934/krm.2009.2.521

[17]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[18]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019027

[19]

Gung-Min Gie, Chang-Yeol Jung, Roger Temam. Recent progresses in boundary layer theory. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2521-2583. doi: 10.3934/dcds.2016.36.2521

[20]

X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure & Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (20)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]