June  2019, 12(3): 483-505. doi: 10.3934/krm.2019020

A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff

Sorbonne Université, CNRS, LPSM, UMR 8001, F-75005 Paris, France

Received  March 2017 Revised  February 2018 Published  February 2019

We consider the spatially homogeneous Boltzmann equation for hard potentials with angular cutoff. This equation has a unique conservative weak solution $ (f_t)_{t\geq 0} $, once the initial condition $ f_0 $ with finite mass and energy is fixed. Taking advantage of the energy conservation, we propose a recursive algorithm that produces a $ (0,\infty)\times {\mathbb{R}}^3 $ random variable $ (M_t,V_t) $ such that $ \mathbb{E}[M_t {\bf 1}_{\{V_t \in \cdot\}}] = f_t $. We also write down a series expansion of $ f_t $. Although both the algorithm and the series expansion might be theoretically interesting in that they explicitly express $ f_t $ in terms of $ f_0 $, we believe that the algorithm is not very efficient in practice and that the series expansion is rather intractable. This is a tedious extension to non-Maxwellian molecules of Wild's sum [18] and of its interpretation by McKean [10,11].

Citation: Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020
References:
[1]

E. A. CarlenM. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000), 370-397. doi: 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0. Google Scholar

[2]

E. A. CarlenM. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation, J. Funct. Anal., 220 (2005), 362-387. doi: 10.1016/j.jfa.2004.06.011. Google Scholar

[3]

E. A. Carlen and F. Salvarani, On the optimal choice of coefficients in a truncated Wild sum and approximate solutions for the Kac equation, J. Statist. Phys., 109 (2002), 261-277. doi: 10.1023/A:1019943813176. Google Scholar

[4]

C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9. Google Scholar

[5]

E. DoleraE. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem, Ann. Appl. Probab., 19 (2009), 186-209. doi: 10.1214/08-AAP538. Google Scholar

[6]

N. Fournier and J. S. Giet, Exact simulation of nonlinear coagulation processes, Monte Carlo Methods Appl., 10 (2004), 95-106. doi: 10.1515/156939604777303253. Google Scholar

[7]

N. Fournier and S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp., 71 (2002), 583-604. doi: 10.1090/S0025-5718-01-01339-4. Google Scholar

[8]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. Ⅲ, University of California Press, 1956,171–197. Google Scholar

[9]

X. Lu and C. Mouhot, On measure solutions of the boltzmann equation part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363. doi: 10.1016/j.jde.2011.10.021. Google Scholar

[10]

H. P. McKean, Speed of approach to equilibrium for Kacs caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367. doi: 10.1007/BF00264463. Google Scholar

[11]

H. P. McKean, An exponential formula for solving Boltmann's equation for a Maxwellian gas, J. Combinatorial Theory, 2 (1967), 358-382. doi: 10.1016/S0021-9800(67)80035-8. Google Scholar

[12]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501. doi: 10.1016/S0294-1449(99)80025-0. Google Scholar

[13]

L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23 (2001), 1253-1273. doi: 10.1137/S1064827500375916. Google Scholar

[14]

A. J. Povzner, About the Boltzmann equation in kinetic gas theory, Mat. Sborn, 58 (1962), 65-86. Google Scholar

[15]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. und Verw. Gebiete, 46 (1978/79), 67-105. doi: 10.1007/BF00535689. Google Scholar

[16]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, I (2002), 71–305. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

[17]

B. Wennberg, An example of nonuniqueness for solutions to the homogeneous Boltzmann equation, J. Statist. Phys., 95 (1999), 469-477. doi: 10.1023/A:1004546031908. Google Scholar

[18]

E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47 (1951), 602-609. doi: 10.1017/S0305004100026992. Google Scholar

show all references

References:
[1]

E. A. CarlenM. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000), 370-397. doi: 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0. Google Scholar

[2]

E. A. CarlenM. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation, J. Funct. Anal., 220 (2005), 362-387. doi: 10.1016/j.jfa.2004.06.011. Google Scholar

[3]

E. A. Carlen and F. Salvarani, On the optimal choice of coefficients in a truncated Wild sum and approximate solutions for the Kac equation, J. Statist. Phys., 109 (2002), 261-277. doi: 10.1023/A:1019943813176. Google Scholar

[4]

C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9. Google Scholar

[5]

E. DoleraE. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem, Ann. Appl. Probab., 19 (2009), 186-209. doi: 10.1214/08-AAP538. Google Scholar

[6]

N. Fournier and J. S. Giet, Exact simulation of nonlinear coagulation processes, Monte Carlo Methods Appl., 10 (2004), 95-106. doi: 10.1515/156939604777303253. Google Scholar

[7]

N. Fournier and S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp., 71 (2002), 583-604. doi: 10.1090/S0025-5718-01-01339-4. Google Scholar

[8]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. Ⅲ, University of California Press, 1956,171–197. Google Scholar

[9]

X. Lu and C. Mouhot, On measure solutions of the boltzmann equation part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363. doi: 10.1016/j.jde.2011.10.021. Google Scholar

[10]

H. P. McKean, Speed of approach to equilibrium for Kacs caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367. doi: 10.1007/BF00264463. Google Scholar

[11]

H. P. McKean, An exponential formula for solving Boltmann's equation for a Maxwellian gas, J. Combinatorial Theory, 2 (1967), 358-382. doi: 10.1016/S0021-9800(67)80035-8. Google Scholar

[12]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501. doi: 10.1016/S0294-1449(99)80025-0. Google Scholar

[13]

L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23 (2001), 1253-1273. doi: 10.1137/S1064827500375916. Google Scholar

[14]

A. J. Povzner, About the Boltzmann equation in kinetic gas theory, Mat. Sborn, 58 (1962), 65-86. Google Scholar

[15]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. und Verw. Gebiete, 46 (1978/79), 67-105. doi: 10.1007/BF00535689. Google Scholar

[16]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, I (2002), 71–305. doi: 10.1016/S1874-5792(02)80004-0. Google Scholar

[17]

B. Wennberg, An example of nonuniqueness for solutions to the homogeneous Boltzmann equation, J. Statist. Phys., 95 (1999), 469-477. doi: 10.1023/A:1004546031908. Google Scholar

[18]

E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47 (1951), 602-609. doi: 10.1017/S0305004100026992. Google Scholar

[1]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[2]

Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445

[3]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[4]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[5]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[6]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[7]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[8]

Krystyna Kuperberg. 2-wild trajectories. Conference Publications, 2005, 2005 (Special) : 518-523. doi: 10.3934/proc.2005.2005.518

[9]

Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109

[10]

Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449

[11]

Paweł Pilarczyk. Topological-numerical approach to the existence of periodic trajectories in ODE's. Conference Publications, 2003, 2003 (Special) : 701-708. doi: 10.3934/proc.2003.2003.701

[12]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[13]

Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049

[14]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[15]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[16]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[17]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

[18]

Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic & Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

[19]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[20]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (38)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]