December  2018, 11(6): 1427-1441. doi: 10.3934/krm.2018056

Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Received  April 2016 Revised  July 2017 Published  June 2018

Fund Project: The authors were supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/H023348/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis)

We study contraction for the kinetic Fokker-Planck operator on the torus. Solving the stochastic differential equation, we show contraction and therefore exponential convergence in the Monge-Kantorovich-Wasserstein $ \mathcal{W}_2$ distance. Finally, we investigate if such a coupling can be obtained by a co-adapted coupling, and show that then the bound must depend on the square root of the initial distance.

Citation: Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056
References:
[1]

F. BolleyI. Gentil and A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263 (2012), 2430-2457. doi: 10.1016/j.jfa.2012.07.007.

[2]

F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884. doi: 10.1051/m2an/2010045.

[3]

K. Burdzy and W. S. Kendall, Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab., 10 (2000), 362-409. doi: 10.1214/aoap/1019487348.

[4]

M. Chen, Optimal Markovian couplings and applications, Acta Math. Sinica (N. S.), 10 (1994), 260–275; A Chinese summary appears in Acta Math. Sinica, 38 (1995), p575. doi: 10.1007/BF02560717.

[5]

S. Gadat and L. Miclo, Spectral decompositions and $ \mathbb{L}^2$-operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, 6 (2013), 317-372. doi: 10.3934/krm.2013.6.317.

[6]

F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359.

[7]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.

[8]

R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[9]

W. S. Kendall, Coupling, local times, immersions, Bernoulli, 21 (2015), 1014-1046. doi: 10.3150/14-BEJ596.

[10]

K. Kuwada, Characterization of maximal Markovian couplings for diffusion processes, Electron. J. Probab., 14 (2009), 633-662. doi: 10.1214/EJP.v14-634.

[11]

S. Mischler and C. Mouhot, Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation, Arch. Ration. Mech. Anal., 221 (2016), 677-723. doi: 10.1007/s00205-016-0972-4.

[12]

P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010, URL http://books.google.co.uk/books?id=e-TbA-dSrzYC. doi: 10.1017/CBO9780511750489.

[13]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998. doi: 10.1088/0951-7715/19/4/011.

[14]

D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields, 8 (2002), 163–198, Inhomogeneous random systems (Cergy-Pontoise, 2001).

[15]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp. doi: 10.1090/S0065-9266-09-00567-5.

[16]

C. Villani, Optimal Transport: Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[17]

R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, USA, 2001, URL https://books.google.co.uk/books?id=4cI5136OdoMC.

show all references

References:
[1]

F. BolleyI. Gentil and A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263 (2012), 2430-2457. doi: 10.1016/j.jfa.2012.07.007.

[2]

F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884. doi: 10.1051/m2an/2010045.

[3]

K. Burdzy and W. S. Kendall, Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab., 10 (2000), 362-409. doi: 10.1214/aoap/1019487348.

[4]

M. Chen, Optimal Markovian couplings and applications, Acta Math. Sinica (N. S.), 10 (1994), 260–275; A Chinese summary appears in Acta Math. Sinica, 38 (1995), p575. doi: 10.1007/BF02560717.

[5]

S. Gadat and L. Miclo, Spectral decompositions and $ \mathbb{L}^2$-operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, 6 (2013), 317-372. doi: 10.3934/krm.2013.6.317.

[6]

F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359.

[7]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.

[8]

R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[9]

W. S. Kendall, Coupling, local times, immersions, Bernoulli, 21 (2015), 1014-1046. doi: 10.3150/14-BEJ596.

[10]

K. Kuwada, Characterization of maximal Markovian couplings for diffusion processes, Electron. J. Probab., 14 (2009), 633-662. doi: 10.1214/EJP.v14-634.

[11]

S. Mischler and C. Mouhot, Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation, Arch. Ration. Mech. Anal., 221 (2016), 677-723. doi: 10.1007/s00205-016-0972-4.

[12]

P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010, URL http://books.google.co.uk/books?id=e-TbA-dSrzYC. doi: 10.1017/CBO9780511750489.

[13]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998. doi: 10.1088/0951-7715/19/4/011.

[14]

D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields, 8 (2002), 163–198, Inhomogeneous random systems (Cergy-Pontoise, 2001).

[15]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp. doi: 10.1090/S0065-9266-09-00567-5.

[16]

C. Villani, Optimal Transport: Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[17]

R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, USA, 2001, URL https://books.google.co.uk/books?id=4cI5136OdoMC.

[1]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

[2]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[3]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[4]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[5]

Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems & Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024

[6]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[7]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[8]

Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012

[9]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-19. doi: 10.3934/dcds.2019228

[10]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[11]

Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[12]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[13]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic & Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[14]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[15]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[16]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[17]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[18]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[19]

Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020067

[20]

Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (33)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]