February  2018, 11(1): 43-69. doi: 10.3934/krm.2018003

A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures

1. 

IGN-LAREG, Université Paris Diderot, Bâtiment Lamarck A, 5 rue Thomas Mann, Case courrier 7071, 75205 Paris Cedex 13, France,

2. 

Université Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu — Paris Rive Gauche, UMR CNRS 7586, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75013, Paris, France,

3. 

CMLS, Ecole polytechnique et CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France,

4. 

Dipartimento di Matematica e Informatica, Universitá degli Studi di Palermo, Via Archirafi 34, I90123 Palermo, Italy

Received  October 2016 Revised  March 2017 Published  August 2017

In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic — Vlasov type — equation for the dispersed phase and a — steady — Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard, Desvillettes, Golse, Ricci, Commun.Math.Sci.,15 (2017), 1703-1741] wherethe evolution of the gas is governed by the Navier-Stokes equation.

Citation: Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003
References:
[1]

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., 113 (1990), 209-259. doi: 10.1007/BF00375065. Google Scholar

[2]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63 (1991), 323-344. doi: 10.1007/BF01026608. Google Scholar

[3]

E. BernardL. DesvillettesF. Golse and V. Ricci, A derivation of the Vlasov-Navier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017), 1703-1741. doi: 10.4310/CMS.2017.v15.n6.a11. Google Scholar

[4]

J. A. CarrilloY.-P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 273-307. doi: 10.1016/j.anihpc.2014.10.002. Google Scholar

[5]

C. Cercignani, Theory and Applications of the Boltzmann Equation, Elsevier, New York, 1975. Google Scholar

[6]

F. Charles, Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas, Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc, 1084 (2009), 409-414. doi: 10.1063/1.3076512. Google Scholar

[7]

F. Charles, Modélisation Mathématique et Étude Numérique d'un Aérosol dans un Gaz Raréfié. Application á la Simulation du Transport de Particules de Poussiére en Cas d'Accident de Perte de Vide dans ITER, Ph.D thesis, ENS Cachan, 2009.Google Scholar

[8]

F. Charles, S. Dellacherie and J. Segré, Kinetic modeling of the transport of dust particles in a rarefied atmosphere Math. Models Methods Appl. Sci. 22 (2012), 1150021, 60 pp. doi: 10.1142/S0218202511500217. Google Scholar

[9]

Y.-P. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems J. Math. Pures Appl. (2017). doi: 10.1016/j.matpur.2017.05.019. Google Scholar

[10]

Y.-P. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015), 3309-3336. doi: 10.1088/0951-7715/28/9/3309. Google Scholar

[11]

D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, Nonlinear Partial Differential Equations and their Applications, 60 (1982), 98-138. Google Scholar

[12]

P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Meth. Appl. Sci., 6 (1996), 405-436. doi: 10.1142/S0218202596000158. Google Scholar

[13]

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136. Google Scholar

[14]

L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied Sciences, 22 (1994), 191-203. Google Scholar

[15]

L. DesvillettesF. Golse and V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008), 941-967. doi: 10.1007/s10955-008-9521-3. Google Scholar

[16]

L. Desvillettes and J. Mathiaud, Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010), 120-141. doi: 10.1007/s10955-010-0044-3. Google Scholar

[17]

M. A. GallisJ. R. Torczyinski and D. J. Rader, An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte-Carlo method, Phys. Fluids, 13 (2001), 3482-3492. doi: 10.1063/1.1409367. Google Scholar

[18]

D. Gérard-Varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010), 375-407. doi: 10.1007/s00205-008-0202-9. Google Scholar

[19]

F. Golse, Fluid dynamic limits of the kinetic theory of gases, From Particle Systems to Partial Differential Equations, 75 (2013), 3-91. doi: 10.1007/978-3-642-54271-8_1. Google Scholar

[20]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515. doi: 10.1512/iumj.2004.53.2508. Google Scholar

[21]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536. doi: 10.1512/iumj.2004.53.2509. Google Scholar

[22]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74. doi: 10.1007/BF03167396. Google Scholar

[23]

M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384. doi: 10.1142/S0218202509003814. Google Scholar

[24]

M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, preprint, arXiv: 1604.04379 [math.AP].Google Scholar

[25]

P.-E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004), 415-432. doi: 10.1007/s00220-004-1126-3. Google Scholar

[26]

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure and Appl. Math., 35 (1982), 629-651. doi: 10.1002/cpa.3160350503. Google Scholar

[27]

L. D. Landau and E. M. Lifshitz, Physical Kinetics. Course of Theoretical Physics, Vol. 10, Pergamon Press, 1981. Google Scholar

[28]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford University Press Inc., New York, 1996. Google Scholar

[29]

P.-L. Lions and N. Masmoudi, Incompressible limit for a compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627. doi: 10.1016/S0021-7824(98)80139-6. Google Scholar

[30]

V. A. L'vov and E. Ya. Khruslov, Perturbation of a viscous incompressible fluid by small particles, (Russian), Theor. Appl. Quest. Differ. Equ. Algebra, 267 (1978), 173-177. Google Scholar

[31]

G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-61752-2. Google Scholar

[32]

Y. Sone, Molecular Gas Dynamics. Theory, Techniques and Applications Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4573-1. Google Scholar

[33]

S. Taguchi, On the drag exerted on the sphere by a slow uniform flow of a rarefied gas, Proc. of the 29th Internat. Symp. on Rarefied Gas Dynamics, 1628 (2014), 51-59. doi: 10.1063/1.4902574. Google Scholar

[34]

S. Taguchi, Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers, J. Fluid Mech., 774 (2015), 363-394. doi: 10.1017/jfm.2015.265. Google Scholar

[35]

S. TakataY. Sone and K. Aoki, Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, 824 (1993), 64-93. doi: 10.1063/1.858655. Google Scholar

[36]

D. Wang and C. Yu, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Diff. Equations, 259 (2015), 3976-4008. doi: 10.1016/j.jde.2015.05.016. Google Scholar

[37]

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293. doi: 10.1016/j.matpur.2013.01.001. Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., 113 (1990), 209-259. doi: 10.1007/BF00375065. Google Scholar

[2]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63 (1991), 323-344. doi: 10.1007/BF01026608. Google Scholar

[3]

E. BernardL. DesvillettesF. Golse and V. Ricci, A derivation of the Vlasov-Navier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017), 1703-1741. doi: 10.4310/CMS.2017.v15.n6.a11. Google Scholar

[4]

J. A. CarrilloY.-P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 273-307. doi: 10.1016/j.anihpc.2014.10.002. Google Scholar

[5]

C. Cercignani, Theory and Applications of the Boltzmann Equation, Elsevier, New York, 1975. Google Scholar

[6]

F. Charles, Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas, Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc, 1084 (2009), 409-414. doi: 10.1063/1.3076512. Google Scholar

[7]

F. Charles, Modélisation Mathématique et Étude Numérique d'un Aérosol dans un Gaz Raréfié. Application á la Simulation du Transport de Particules de Poussiére en Cas d'Accident de Perte de Vide dans ITER, Ph.D thesis, ENS Cachan, 2009.Google Scholar

[8]

F. Charles, S. Dellacherie and J. Segré, Kinetic modeling of the transport of dust particles in a rarefied atmosphere Math. Models Methods Appl. Sci. 22 (2012), 1150021, 60 pp. doi: 10.1142/S0218202511500217. Google Scholar

[9]

Y.-P. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems J. Math. Pures Appl. (2017). doi: 10.1016/j.matpur.2017.05.019. Google Scholar

[10]

Y.-P. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015), 3309-3336. doi: 10.1088/0951-7715/28/9/3309. Google Scholar

[11]

D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, Nonlinear Partial Differential Equations and their Applications, 60 (1982), 98-138. Google Scholar

[12]

P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Meth. Appl. Sci., 6 (1996), 405-436. doi: 10.1142/S0218202596000158. Google Scholar

[13]

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136. Google Scholar

[14]

L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied Sciences, 22 (1994), 191-203. Google Scholar

[15]

L. DesvillettesF. Golse and V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008), 941-967. doi: 10.1007/s10955-008-9521-3. Google Scholar

[16]

L. Desvillettes and J. Mathiaud, Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010), 120-141. doi: 10.1007/s10955-010-0044-3. Google Scholar

[17]

M. A. GallisJ. R. Torczyinski and D. J. Rader, An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte-Carlo method, Phys. Fluids, 13 (2001), 3482-3492. doi: 10.1063/1.1409367. Google Scholar

[18]

D. Gérard-Varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010), 375-407. doi: 10.1007/s00205-008-0202-9. Google Scholar

[19]

F. Golse, Fluid dynamic limits of the kinetic theory of gases, From Particle Systems to Partial Differential Equations, 75 (2013), 3-91. doi: 10.1007/978-3-642-54271-8_1. Google Scholar

[20]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515. doi: 10.1512/iumj.2004.53.2508. Google Scholar

[21]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536. doi: 10.1512/iumj.2004.53.2509. Google Scholar

[22]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74. doi: 10.1007/BF03167396. Google Scholar

[23]

M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384. doi: 10.1142/S0218202509003814. Google Scholar

[24]

M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, preprint, arXiv: 1604.04379 [math.AP].Google Scholar

[25]

P.-E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004), 415-432. doi: 10.1007/s00220-004-1126-3. Google Scholar

[26]

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure and Appl. Math., 35 (1982), 629-651. doi: 10.1002/cpa.3160350503. Google Scholar

[27]

L. D. Landau and E. M. Lifshitz, Physical Kinetics. Course of Theoretical Physics, Vol. 10, Pergamon Press, 1981. Google Scholar

[28]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford University Press Inc., New York, 1996. Google Scholar

[29]

P.-L. Lions and N. Masmoudi, Incompressible limit for a compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627. doi: 10.1016/S0021-7824(98)80139-6. Google Scholar

[30]

V. A. L'vov and E. Ya. Khruslov, Perturbation of a viscous incompressible fluid by small particles, (Russian), Theor. Appl. Quest. Differ. Equ. Algebra, 267 (1978), 173-177. Google Scholar

[31]

G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-61752-2. Google Scholar

[32]

Y. Sone, Molecular Gas Dynamics. Theory, Techniques and Applications Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4573-1. Google Scholar

[33]

S. Taguchi, On the drag exerted on the sphere by a slow uniform flow of a rarefied gas, Proc. of the 29th Internat. Symp. on Rarefied Gas Dynamics, 1628 (2014), 51-59. doi: 10.1063/1.4902574. Google Scholar

[34]

S. Taguchi, Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers, J. Fluid Mech., 774 (2015), 363-394. doi: 10.1017/jfm.2015.265. Google Scholar

[35]

S. TakataY. Sone and K. Aoki, Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, 824 (1993), 64-93. doi: 10.1063/1.858655. Google Scholar

[36]

D. Wang and C. Yu, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Diff. Equations, 259 (2015), 3976-4008. doi: 10.1016/j.jde.2015.05.016. Google Scholar

[37]

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293. doi: 10.1016/j.matpur.2013.01.001. Google Scholar

Table 1.   
ParameterDefinition
$L$size of the container (periodic box)
$\mathcal{N}_p$number of particles$/L^3$
$\mathcal{N}_g$number of gas molecules$/L^3$
$V_p$thermal speed of particles
$V_g$thermal speed of gas molecules
$S_{pp}$average particle/particle cross-section
$S_{pg}$average particle/gas cross-section
$S_{gg}$average molecular cross-section
$\eta=m_g/m_p$mass ratio (molecules/particles)
$\mu=(m_g \mathcal{N}_g)/(m_p \mathcal{N}_p)$mass fraction (gas/dust or droplets)
${\epsilon}=V_p/V_g$thermal speed ratio (particles/molecules)
ParameterDefinition
$L$size of the container (periodic box)
$\mathcal{N}_p$number of particles$/L^3$
$\mathcal{N}_g$number of gas molecules$/L^3$
$V_p$thermal speed of particles
$V_g$thermal speed of gas molecules
$S_{pp}$average particle/particle cross-section
$S_{pg}$average particle/gas cross-section
$S_{gg}$average molecular cross-section
$\eta=m_g/m_p$mass ratio (molecules/particles)
$\mu=(m_g \mathcal{N}_g)/(m_p \mathcal{N}_p)$mass fraction (gas/dust or droplets)
${\epsilon}=V_p/V_g$thermal speed ratio (particles/molecules)
[1]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic & Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[2]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[3]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[4]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[5]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[6]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[7]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[8]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[9]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[10]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[11]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

[12]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[13]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[14]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[15]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[16]

Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143

[17]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[18]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[19]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[20]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (34)
  • HTML views (119)
  • Cited by (1)

[Back to Top]