December  2017, 10(4): 1235-1253. doi: 10.3934/krm.2017047

The stability of contact discontinuity for compressible planar magnetohydrodynamics

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

* Corresponding author: Haiyan Yin

Received  October 2016 Revised  January 2017 Published  March 2017

This paper is concerned with the planar magnetohydrodynamicswith initial data whose behaviors at far fields $x\rightarrow \pm\infty$ are different. Motivated by the relationship between planar magnetohydrodynamics and Navier-Stokes, we can prove that the solutions to the planar magnetohydrodynamics tend time-asymptotically to a viscous contact wave which is constructed from a contact discontinuity solution of the Riemann problemon Euler system. This result is proved by the method of elementary energy estimates.

Citation: Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 1235-1253. doi: 10.3934/krm.2017047
References:
[1]

F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation, Arch. Ration. Mech. Anal., 54 (1974), 373-392. doi: 10.1007/BF00249197. Google Scholar

[2]

G. Q. Chen and D. H. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376. doi: 10.1006/jdeq.2001.4111. Google Scholar

[3]

G. Q. Chen and D. H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632. doi: 10.1007/s00033-003-1017-z. Google Scholar

[4]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal., 72 (2010), 4438-4451. doi: 10.1016/j.na.2010.02.019. Google Scholar

[5]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629. doi: 10.1007/s00220-006-0052-y. Google Scholar

[6]

J. S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Commun. Math. Phys., 270 (2007), 691-708. doi: 10.1007/s00220-006-0167-1. Google Scholar

[7]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128. doi: 10.1137/S0036141093247366. Google Scholar

[8]

J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., 95 (1986), 325-344. doi: 10.1007/BF00276840. Google Scholar

[9]

X. P. Hu and D. H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9. Google Scholar

[10]

F. M. HuangJ. Li and A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89-116. doi: 10.1007/s00205-009-0267-0. Google Scholar

[11]

F. M. HuangA. Matsumura and X. D. Shi, On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary, Osaka J. Math., 41 (2004), 193-210. Google Scholar

[12]

F. M. HuangA. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77. doi: 10.1007/s00205-005-0380-7. Google Scholar

[13]

F. M. HuangY. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: Ⅰ. Superposition of rarefaction waves and contact discontinuity, Kinet. Relat. Models, 3 (2010), 685-728. doi: 10.3934/krm.2010.3.685. Google Scholar

[14]

F. M. HuangZ. P. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297. doi: 10.1016/j.aim.2008.06.014. Google Scholar

[15]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A, Math. Sci., 58 (1982), 384-387. doi: 10.3792/pjaa.58.384. Google Scholar

[16]

H. L. LiX. Y. Xu and J. W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387. doi: 10.1137/120893355. Google Scholar

[17]

T. P. Liu and Z. P. Xin, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118 (1988), 451-465. doi: 10.1007/BF01466726. Google Scholar

[18]

B. Q. Lv and B. Huang, On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum, Nonlinearity, 28 (2015), 509-530. doi: 10.1088/0951-7715/28/2/509. Google Scholar

[19]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497. Google Scholar

[20]

X. K. Pu and B. L. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, Z. Angew. Math. Phys., 64 (2013), 519-538. doi: 10.1007/s00033-012-0245-5. Google Scholar

[21]

X. H. QinT. Wang and Y. Wang, Global stability of wave patterns for compressible Navier-Stokes system with free boundary, Acta Math. Sci. Ser. B Engl. Ed., 36 (2016), 1192-1214. doi: 10.1016/S0252-9602(16)30062-5. Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0. Google Scholar

[23]

A. Vasseur and Y. Wang, The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method, SIAM J. Math. Anal., 47 (2015), 4350-4359. doi: 10.1137/15M1023439. Google Scholar

[24]

D. H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441. doi: 10.1137/S0036139902409284. Google Scholar

[25]

X. Ye and J. W. Zhang, On the behavior of boundary layers of one-dimensional isentropic planar MHD equations with vanishing shear viscosity limit, J. Differential Equations, 260 (2016), 3927-3961. doi: 10.1016/j.jde.2015.10.049. Google Scholar

show all references

References:
[1]

F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation, Arch. Ration. Mech. Anal., 54 (1974), 373-392. doi: 10.1007/BF00249197. Google Scholar

[2]

G. Q. Chen and D. H. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376. doi: 10.1006/jdeq.2001.4111. Google Scholar

[3]

G. Q. Chen and D. H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632. doi: 10.1007/s00033-003-1017-z. Google Scholar

[4]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal., 72 (2010), 4438-4451. doi: 10.1016/j.na.2010.02.019. Google Scholar

[5]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629. doi: 10.1007/s00220-006-0052-y. Google Scholar

[6]

J. S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Commun. Math. Phys., 270 (2007), 691-708. doi: 10.1007/s00220-006-0167-1. Google Scholar

[7]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128. doi: 10.1137/S0036141093247366. Google Scholar

[8]

J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., 95 (1986), 325-344. doi: 10.1007/BF00276840. Google Scholar

[9]

X. P. Hu and D. H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9. Google Scholar

[10]

F. M. HuangJ. Li and A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89-116. doi: 10.1007/s00205-009-0267-0. Google Scholar

[11]

F. M. HuangA. Matsumura and X. D. Shi, On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary, Osaka J. Math., 41 (2004), 193-210. Google Scholar

[12]

F. M. HuangA. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77. doi: 10.1007/s00205-005-0380-7. Google Scholar

[13]

F. M. HuangY. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: Ⅰ. Superposition of rarefaction waves and contact discontinuity, Kinet. Relat. Models, 3 (2010), 685-728. doi: 10.3934/krm.2010.3.685. Google Scholar

[14]

F. M. HuangZ. P. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297. doi: 10.1016/j.aim.2008.06.014. Google Scholar

[15]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A, Math. Sci., 58 (1982), 384-387. doi: 10.3792/pjaa.58.384. Google Scholar

[16]

H. L. LiX. Y. Xu and J. W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387. doi: 10.1137/120893355. Google Scholar

[17]

T. P. Liu and Z. P. Xin, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118 (1988), 451-465. doi: 10.1007/BF01466726. Google Scholar

[18]

B. Q. Lv and B. Huang, On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum, Nonlinearity, 28 (2015), 509-530. doi: 10.1088/0951-7715/28/2/509. Google Scholar

[19]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497. Google Scholar

[20]

X. K. Pu and B. L. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, Z. Angew. Math. Phys., 64 (2013), 519-538. doi: 10.1007/s00033-012-0245-5. Google Scholar

[21]

X. H. QinT. Wang and Y. Wang, Global stability of wave patterns for compressible Navier-Stokes system with free boundary, Acta Math. Sci. Ser. B Engl. Ed., 36 (2016), 1192-1214. doi: 10.1016/S0252-9602(16)30062-5. Google Scholar

[22]

J. Smoller, Shock Waves and Reaction-Diffusion Equations 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0. Google Scholar

[23]

A. Vasseur and Y. Wang, The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method, SIAM J. Math. Anal., 47 (2015), 4350-4359. doi: 10.1137/15M1023439. Google Scholar

[24]

D. H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441. doi: 10.1137/S0036139902409284. Google Scholar

[25]

X. Ye and J. W. Zhang, On the behavior of boundary layers of one-dimensional isentropic planar MHD equations with vanishing shear viscosity limit, J. Differential Equations, 260 (2016), 3927-3961. doi: 10.1016/j.jde.2015.10.049. Google Scholar

[1]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[2]

Toyohiko Aiki, Adrian Muntean. Large time behavior of solutions to a moving-interface problem modeling concrete carbonation. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1117-1129. doi: 10.3934/cpaa.2010.9.1117

[3]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[4]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[5]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure & Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[6]

Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651

[7]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[8]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[9]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[12]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[13]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[14]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[15]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[16]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[17]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[18]

Shijin Deng. Large time behavior for the IBVP of the 3-D Nishida's model. Networks & Heterogeneous Media, 2010, 5 (1) : 133-142. doi: 10.3934/nhm.2010.5.133

[19]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[20]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (13)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]