• Previous Article
    Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime
  • KRM Home
  • This Issue
  • Next Article
    Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models
September  2017, 10(3): 573-585. doi: 10.3934/krm.2017023

Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules

1. 

Keldysh Institute for Applied Mathematics RAS, Miusskaya Sq. 4, 125047 Moscow, RF, Russia

2. 

Department of Mathematics and ICES, The University of Texas at Austin, 1 University Station C0200, Texas 78712, USA

Received  July 2016 Revised  August 2016 Published  December 2016

We consider solutions to the initial value problem for the spatially homogeneous Boltzmann equation for pseudo-Maxwell molecules and show uniform in time propagation of upper Maxwellians bounds if the initial distribution function is bounded by a given Maxwellian. First we prove the corresponding integral estimate and then transform it to the desired local estimate. We remark that propagation of such upper Maxwellian bounds were obtained by Gamba, Panferov and Villani for the case of hard spheres and hard potentials with angular cut-off. That manuscript introduced the main ideas and tools needed to prove such local estimates on the basis of similar integral estimates. The case of pseudo-Maxwell molecules needs, however, a special consideration performed in the present paper.

Citation: Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023
References:
[1]

R. Alonso and I. M. Gamba, $ L^1$-$L^\infty$ Maxwellian bounds for the derivatives of the solution of the homogeneous Boltzmann equation, Journal de Mathematiques Pures et Appliquees(9), 89 (2008), 575-595. doi: 10.1016/j.matpur.2008.02.006. Google Scholar

[2]

L. Arkeryd, $ L^∞$ estimates for the space homogeneous Boltzmann equation, J. Statist. Phys., 31 (1983), 347-361. doi: 10.1007/BF01011586. Google Scholar

[3]

A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules(Russian), Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044. Google Scholar

[4]

A. V. Bobylev, On expansion of the Boltzmann integral into Landau series, Sov. Phys. Dokl., 207 (1976), 40-742. Google Scholar

[5]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Mathematical physics reviews, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Academic Publ., Chur, 7 (1988), 111-233. Google Scholar

[6]

A. V. Bobylev, Moment inequalities for the Boltzmann equations and application to spatially homogeneous problems, J. Statist. Phys., 88 (1997), 1183-1214. doi: 10.1007/BF02732431. Google Scholar

[7]

A. V. Bobylev and V. V. Vedeniapin, The maximum principle for discrete models of the Boltzmann equation and the relation of integrals of direct and inverse collisions of the Boltzmann equation, (in Russian), Doklady AN SSSR, 233 (1977), 519-522. English translation in Soviet Math. Dokl. Vol., 18 (1977), 413-417. Google Scholar

[8]

I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal, 194 (2009), 253-282. doi: 10.1007/s00205-009-0250-9. Google Scholar

[9] L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford-New York-Toronto, Ont, 1976. Google Scholar
[10]

B. Wennberg, Stability and Exponential Convergence for the Boltzmann Equation, PhD thesis, Department of Mathematics, Chalmers/Gothenburg University, 1993.Google Scholar

[11]

B. Wennberg, Stability and exponential convergence for the Boltzmann equation, Arch. Rational Mech. Anal., 130 (1995), 103-144. doi: 10.1007/BF00375152. Google Scholar

show all references

References:
[1]

R. Alonso and I. M. Gamba, $ L^1$-$L^\infty$ Maxwellian bounds for the derivatives of the solution of the homogeneous Boltzmann equation, Journal de Mathematiques Pures et Appliquees(9), 89 (2008), 575-595. doi: 10.1016/j.matpur.2008.02.006. Google Scholar

[2]

L. Arkeryd, $ L^∞$ estimates for the space homogeneous Boltzmann equation, J. Statist. Phys., 31 (1983), 347-361. doi: 10.1007/BF01011586. Google Scholar

[3]

A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules(Russian), Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044. Google Scholar

[4]

A. V. Bobylev, On expansion of the Boltzmann integral into Landau series, Sov. Phys. Dokl., 207 (1976), 40-742. Google Scholar

[5]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Mathematical physics reviews, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Academic Publ., Chur, 7 (1988), 111-233. Google Scholar

[6]

A. V. Bobylev, Moment inequalities for the Boltzmann equations and application to spatially homogeneous problems, J. Statist. Phys., 88 (1997), 1183-1214. doi: 10.1007/BF02732431. Google Scholar

[7]

A. V. Bobylev and V. V. Vedeniapin, The maximum principle for discrete models of the Boltzmann equation and the relation of integrals of direct and inverse collisions of the Boltzmann equation, (in Russian), Doklady AN SSSR, 233 (1977), 519-522. English translation in Soviet Math. Dokl. Vol., 18 (1977), 413-417. Google Scholar

[8]

I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal, 194 (2009), 253-282. doi: 10.1007/s00205-009-0250-9. Google Scholar

[9] L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford-New York-Toronto, Ont, 1976. Google Scholar
[10]

B. Wennberg, Stability and Exponential Convergence for the Boltzmann Equation, PhD thesis, Department of Mathematics, Chalmers/Gothenburg University, 1993.Google Scholar

[11]

B. Wennberg, Stability and exponential convergence for the Boltzmann equation, Arch. Rational Mech. Anal., 130 (1995), 103-144. doi: 10.1007/BF00375152. Google Scholar

[1]

Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025

[2]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic & Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[3]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[4]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[5]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[6]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[7]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[8]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[9]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[10]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[11]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[12]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[13]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[14]

Thomas Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic & Related Models, 2017, 10 (4) : 957-976. doi: 10.3934/krm.2017038

[15]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[16]

Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135

[17]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[18]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[19]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[20]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]