• Previous Article
    Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos
  • KRM Home
  • This Issue
  • Next Article
    Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle
December  2016, 9(4): 749-766. doi: 10.3934/krm.2016014

Chaotic distributions for relativistic particles

1. 

Department of Mathematical sciences, Chalmers University of Technology and the University of Gothenburg, 412 96 GÖTEBORG, Sweden, Sweden

Received  July 2015 Revised  April 2016 Published  September 2016

We study a modified Kac model where the classical kinetic energy is replaced by an arbitrary energy function $\phi(v)$, $v \in \mathbb{R}$. The aim of this paper is to show that the uniform density with respect to the microcanonical measure is $Ce^{-z_0\phi(v)}$-chaotic, $C,z_0 \in \mathbb{R}_+$. The kinetic energy for relativistic particles is a special case. A generalization to the case $v\in \mathbb{R}^d$ which involves conservation momentum is also formally discussed.
Citation: Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014
References:
[1]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85. doi: 10.3934/krm.2010.3.85. Google Scholar

[2]

E. A. Carlen, P. Degond and B. Wennbrg, Kinetic limits for pair-interaction driven master equations and biological swarm models,, Math. Models Methods Appl. Sci., 23 (2013), 1339. doi: 10.1142/S0218202513500115. Google Scholar

[3]

K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere,, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993. doi: 10.1214/14-AIHP612. Google Scholar

[4]

C. Cercignani and G. Medeiros Kremer, The Relativistic Boltzmann Equation: Theory and Applications,, Birkhäuser Verlag, (2002). doi: 10.1007/978-3-0348-8165-4. Google Scholar

[5]

J. T. Chang D. Pollard, Conditioning as disintegration,, Statist. Neerlandica, 51 (1997), 287. doi: 10.1111/1467-9574.00056. Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition,, CRC Press, (2015). Google Scholar

[7]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics, (2013). Google Scholar

[8]

R. V. Gamkrelidze, Integral representations and asymptotic methods,, in Encyclopaedia of Mathematical Sciences, (1989). doi: 10.1007/978-3-642-61310-4. Google Scholar

[9]

M. Kac, Foundations of kinetic theory,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171. Google Scholar

[10]

O. E. Landford III, Time evolution of large classical systems,, Dynamical Systems, 38 (1975), 1. Google Scholar

[11]

T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations,, Imperial College Press, (2010). doi: 10.1142/9781848162488. Google Scholar

[12]

M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials,, Rev. Math. Phys., 26 (2014). doi: 10.1142/S0129055X14500019. Google Scholar

[13]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, 1464 (1991), 165. doi: 10.1007/BFb0085169. Google Scholar

[14]

R. M. Strain, Coordinates in the relativistic Boltzmann theory,, Kinet. Relat. Models, 4 (2011), 345. doi: 10.3934/krm.2011.4.345. Google Scholar

[15]

R. M. Strain and S.-B. Yun, Spatially homogeneous Boltzmann equation for relativistic particles,, SIAM J. Math. Anal., 46 (2014), 917. doi: 10.1137/130923531. Google Scholar

[16]

M. Toda, R. Kubo and N. Saitô, Statistical Physics I, Equilibrium Statistical Mechanics,, 2nd edition, (1992). Google Scholar

show all references

References:
[1]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85. doi: 10.3934/krm.2010.3.85. Google Scholar

[2]

E. A. Carlen, P. Degond and B. Wennbrg, Kinetic limits for pair-interaction driven master equations and biological swarm models,, Math. Models Methods Appl. Sci., 23 (2013), 1339. doi: 10.1142/S0218202513500115. Google Scholar

[3]

K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere,, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993. doi: 10.1214/14-AIHP612. Google Scholar

[4]

C. Cercignani and G. Medeiros Kremer, The Relativistic Boltzmann Equation: Theory and Applications,, Birkhäuser Verlag, (2002). doi: 10.1007/978-3-0348-8165-4. Google Scholar

[5]

J. T. Chang D. Pollard, Conditioning as disintegration,, Statist. Neerlandica, 51 (1997), 287. doi: 10.1111/1467-9574.00056. Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition,, CRC Press, (2015). Google Scholar

[7]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics, (2013). Google Scholar

[8]

R. V. Gamkrelidze, Integral representations and asymptotic methods,, in Encyclopaedia of Mathematical Sciences, (1989). doi: 10.1007/978-3-642-61310-4. Google Scholar

[9]

M. Kac, Foundations of kinetic theory,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171. Google Scholar

[10]

O. E. Landford III, Time evolution of large classical systems,, Dynamical Systems, 38 (1975), 1. Google Scholar

[11]

T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations,, Imperial College Press, (2010). doi: 10.1142/9781848162488. Google Scholar

[12]

M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials,, Rev. Math. Phys., 26 (2014). doi: 10.1142/S0129055X14500019. Google Scholar

[13]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, 1464 (1991), 165. doi: 10.1007/BFb0085169. Google Scholar

[14]

R. M. Strain, Coordinates in the relativistic Boltzmann theory,, Kinet. Relat. Models, 4 (2011), 345. doi: 10.3934/krm.2011.4.345. Google Scholar

[15]

R. M. Strain and S.-B. Yun, Spatially homogeneous Boltzmann equation for relativistic particles,, SIAM J. Math. Anal., 46 (2014), 917. doi: 10.1137/130923531. Google Scholar

[16]

M. Toda, R. Kubo and N. Saitô, Statistical Physics I, Equilibrium Statistical Mechanics,, 2nd edition, (1992). Google Scholar

[1]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[2]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[3]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[4]

Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025

[5]

Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic & Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1

[6]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[7]

Todd Young. Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 359-378. doi: 10.3934/dcds.2003.9.359

[8]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[9]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[10]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

[11]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[12]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[13]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[14]

Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic & Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036

[15]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[16]

Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems & Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927

[17]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic & Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[18]

Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647

[19]

Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363

[20]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]