December  2016, 9(4): 657-686. doi: 10.3934/krm.2016011

A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror

1. 

Dipartimento di Matematica, Università di Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma

2. 

Dipartimento di Matematica "Guido Castelnuovo", Università La Sapienza P.le A. Moro 5, 00185 Roma

Received  October 2015 Revised  March 2016 Published  September 2016

We study the time evolution of a single species positive plasma, confined in a cylinder and having infinite charge. We extend the result of a previous work by the same authors, for a plasma density having compact support in the velocities, to the case of a density having unbounded support and gaussian decay in the velocities.
Citation: Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011
References:
[1]

E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rat. Mech. Anal., 159 (2001), 85. doi: 10.1007/s002050100150. Google Scholar

[2]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Comm. Part. Diff. Eq., 27 (2002), 791. doi: 10.1081/PDE-120002874. Google Scholar

[3]

S. Caprino, G. Cavallaro and C. Marchioro, Time evolution of a Vlasov-Poisson plasma with magnetic confinement,, Kinetic and Related Models, 5 (2012), 729. doi: 10.3934/krm.2012.5.729. Google Scholar

[4]

S. Caprino, G. Cavallaro and C. Marchioro, On a magnetically confined plasma with infinite charge,, SIAM J. Math. Anal., 46 (2014), 133. doi: 10.1137/130916527. Google Scholar

[5]

S. Caprino, G. Cavallaro and C. Marchioro, Remark on a magnetically confined plasma with infinite charge,, Rend. Mat. Appl., 35 (2014), 69. Google Scholar

[6]

S. Caprino, G. Cavallaro and C. Marchioro, On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror,, J. Math. Anal. Appl., 427 (2015), 31. doi: 10.1016/j.jmaa.2015.02.012. Google Scholar

[7]

R. Glassey, The Cauchy Problem in Kinetic Theory,, SIAM, (1996). doi: 10.1137/1.9781611971477. Google Scholar

[8]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[9]

T. Nguyen, V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system,, Kinetic and Related Models, 8 (2015), 153. doi: 10.3934/krm.2015.8.153. Google Scholar

[10]

S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics,, Comm. Part. Diff. Eq., 31 (2006), 349. doi: 10.1080/03605300500358004. Google Scholar

[11]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, Jour. Diff. Eq., 95 (1992), 281. doi: 10.1016/0022-0396(92)90033-J. Google Scholar

[12]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Comm. Part. Diff. Eq., 16 (1991), 1313. doi: 10.1080/03605309108820801. Google Scholar

[13]

J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics,, Comm. Part. Diff. Eq., 28 (2003), 1057. doi: 10.1081/PDE-120021186. Google Scholar

[14]

J. Schaeffer, Steady spatial asymptotics for the Vlasov-Poisson system,, Math. Meth. Appl. Sci., 26 (2003), 273. doi: 10.1002/mma.354. Google Scholar

[15]

J. Schaeffer, Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior,, Kinetic and Related Models, 5 (2012), 129. doi: 10.3934/krm.2012.5.129. Google Scholar

[16]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,, J. Math. Anal. Appl., 176 (1993), 76. doi: 10.1006/jmaa.1993.1200. Google Scholar

show all references

References:
[1]

E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rat. Mech. Anal., 159 (2001), 85. doi: 10.1007/s002050100150. Google Scholar

[2]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Comm. Part. Diff. Eq., 27 (2002), 791. doi: 10.1081/PDE-120002874. Google Scholar

[3]

S. Caprino, G. Cavallaro and C. Marchioro, Time evolution of a Vlasov-Poisson plasma with magnetic confinement,, Kinetic and Related Models, 5 (2012), 729. doi: 10.3934/krm.2012.5.729. Google Scholar

[4]

S. Caprino, G. Cavallaro and C. Marchioro, On a magnetically confined plasma with infinite charge,, SIAM J. Math. Anal., 46 (2014), 133. doi: 10.1137/130916527. Google Scholar

[5]

S. Caprino, G. Cavallaro and C. Marchioro, Remark on a magnetically confined plasma with infinite charge,, Rend. Mat. Appl., 35 (2014), 69. Google Scholar

[6]

S. Caprino, G. Cavallaro and C. Marchioro, On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror,, J. Math. Anal. Appl., 427 (2015), 31. doi: 10.1016/j.jmaa.2015.02.012. Google Scholar

[7]

R. Glassey, The Cauchy Problem in Kinetic Theory,, SIAM, (1996). doi: 10.1137/1.9781611971477. Google Scholar

[8]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[9]

T. Nguyen, V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system,, Kinetic and Related Models, 8 (2015), 153. doi: 10.3934/krm.2015.8.153. Google Scholar

[10]

S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics,, Comm. Part. Diff. Eq., 31 (2006), 349. doi: 10.1080/03605300500358004. Google Scholar

[11]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, Jour. Diff. Eq., 95 (1992), 281. doi: 10.1016/0022-0396(92)90033-J. Google Scholar

[12]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Comm. Part. Diff. Eq., 16 (1991), 1313. doi: 10.1080/03605309108820801. Google Scholar

[13]

J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics,, Comm. Part. Diff. Eq., 28 (2003), 1057. doi: 10.1081/PDE-120021186. Google Scholar

[14]

J. Schaeffer, Steady spatial asymptotics for the Vlasov-Poisson system,, Math. Meth. Appl. Sci., 26 (2003), 273. doi: 10.1002/mma.354. Google Scholar

[15]

J. Schaeffer, Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior,, Kinetic and Related Models, 5 (2012), 129. doi: 10.3934/krm.2012.5.129. Google Scholar

[16]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,, J. Math. Anal. Appl., 176 (1993), 76. doi: 10.1006/jmaa.1993.1200. Google Scholar

[1]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[2]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[3]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[4]

Silvia Caprino, Carlo Marchioro. On a charge interacting with a plasma of unbounded mass. Kinetic & Related Models, 2011, 4 (1) : 215-226. doi: 10.3934/krm.2011.4.215

[5]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[6]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[7]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[8]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[9]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[10]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[11]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[12]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[13]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[14]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[15]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[16]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[17]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[18]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[19]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[20]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]