December  2016, 9(4): 621-656. doi: 10.3934/krm.2016010

A minimization formulation of a bi-kinetic sheath

1. 

UPMC-Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu F75252 Paris cedex 05, France, France, France

Received  October 2014 Revised  July 2015 Published  September 2016

The mathematical description of the interaction between a plasma and a solid surface is a major issue that still remains challenging. In this paper, we model this interaction as a stationary and bi-kinetic Vlasov-Poisson-Ampère boundary value problem with boundary conditions that are consistent with the physics. In particular, we show that the wall potential can be determined from the ampibolarity of the particle flows as the unique solution of a non linear equation. Based on variational techniques, our analysis establishes the well-posedness of the model, provided that the incoming ion distribution satisfies a moment condition that generalizes the historical Bohm criterion of plasma physics. Quantitative estimates are also given, together with numerical illustrations that validate the robustness of our approach.
Citation: Mehdi Badsi, Martin Campos Pinto, Bruno Després. A minimization formulation of a bi-kinetic sheath. Kinetic & Related Models, 2016, 9 (4) : 621-656. doi: 10.3934/krm.2016010
References:
[1]

J. Apell, The superposition operator in function spaces. A survey,, Expositiones Mathematicae, (1988). Google Scholar

[2]

A. Ambroso, X. Fleury, B. Lucquin-Desreux and P. A. Raviart, Some remarks on a stationary Vlasov-Poisson system with source term arising in ion beam neutralization,, Transport Theory Statist. Phys., 30 (2001), 587. doi: 10.1081/TT-100107418. Google Scholar

[3]

S. Baalrud and C. Hegna, Kinetic theory of the presheath and the Bohm criterion,, Plasma Sources Science and Technology, 20 (2011). Google Scholar

[4]

H. Beresticky and T. Lachant-Robert, Some properties of monotone rearrangement with applications to elliptic equations in cylinders,, Math. Nachr., 266 (2004), 3. doi: 10.1002/mana.200310139. Google Scholar

[5]

D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields,, McGraw Hill, (1949). Google Scholar

[6]

R. Chalise and R. Khanal, A Kinetic Trajectory Simulation for Magnetized Plasma Sheath,, Institute of Physics Publishing, (2012). Google Scholar

[7]

F. Chen, Introduction to Plasma Physics,, Plenum Press, (1974). Google Scholar

[8]

R. J. Diperna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Inventiones Mathematicae, 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[9]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (2010). doi: 10.1090/gsm/019. Google Scholar

[10]

M. Feldman, S. Y. HA and M. Slemrod, A Geometric level-set formulation of a plasma sheath interface,, Arch. Rat. Mech. Anal., 178 (2005), 81. doi: 10.1007/s00205-005-0368-3. Google Scholar

[11]

Y. Güçlü, The plasma sheath for 1D-1V Vlasov-Poisson solvers,, Invited talk at the Numkin 2013 Conference, (2013). Google Scholar

[12]

Y. Guo, C.-H. Shu and T. Zie, The dynamics of a plane diode,, SIAM J. Math. Anal., 35 (2004), 1617. doi: 10.1137/S0036141003421133. Google Scholar

[13]

O. Kavian, Introduction à la Théorie des Points Critiques et Applications Aux Problèmes Elliptiques,, Springer-Verlage, (1993). Google Scholar

[14]

H. Kohno, J. R. Myra and D. A. D'Ippolito, Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface,, Physics of Plasmas, 20 (2013). Google Scholar

[15]

J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less, Maxwellian plasma at rest,, Institute for Aerospace Studies, (1966). Google Scholar

[16]

P.-H. Maire, Établissement et Comparaison de Modèles Fluides Pour un Plasma Faiblement Ionisé Quasi-neutre. Détermination des Conditions aux Limites à la Paroi,, Thèse de Doctorat (in French) de l'Université Paris 6, (1996). Google Scholar

[17]

G. Manfredi and S. Devaux, Magnetized Plasma-Wall Transition. Consequences for Wall Sputtering and Erosion,, Institute of Physics Publishing, (2008). Google Scholar

[18]

R. E. Marshak, The variational method for asymptotic neutron densities,, Physical Review, 71 (1947), 688. Google Scholar

[19]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions,, National Institute of Standards and Technology, (2010). Google Scholar

[20]

P.-A. Raviart and C. Greengard, A Boundary-Value problem for the stationary Vlasov-Poisson equations: The Plane Diode,, Comm. Pure Appl. Math., 43 (1990), 473. doi: 10.1002/cpa.3160430404. Google Scholar

[21]

K.-U. Riemann, The Bohm criterion and sheath formation,, J. Phys. D: Appl. Phys., 24 (1991). doi: 10.1088/0022-3727/24/4/001. Google Scholar

[22]

T. E. Sheridan, Solution of the Plasma-Sheath Equation with a Cool Maxwellian Ion Source,, AIP Publishing, (2001). Google Scholar

[23]

G. Stampachia and D. Kinderlehrer, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980). Google Scholar

[24]

P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices,, Institute of Physics Publishing, (2000). Google Scholar

[25]

F. Valsaque and G. Manfredi, Numerical study of plasma wall transition in an oblique magnetic field,, Journal of Nuclear Materials, 290-293 (2001), 290. doi: 10.1016/S0022-3115(00)00454-2. Google Scholar

show all references

References:
[1]

J. Apell, The superposition operator in function spaces. A survey,, Expositiones Mathematicae, (1988). Google Scholar

[2]

A. Ambroso, X. Fleury, B. Lucquin-Desreux and P. A. Raviart, Some remarks on a stationary Vlasov-Poisson system with source term arising in ion beam neutralization,, Transport Theory Statist. Phys., 30 (2001), 587. doi: 10.1081/TT-100107418. Google Scholar

[3]

S. Baalrud and C. Hegna, Kinetic theory of the presheath and the Bohm criterion,, Plasma Sources Science and Technology, 20 (2011). Google Scholar

[4]

H. Beresticky and T. Lachant-Robert, Some properties of monotone rearrangement with applications to elliptic equations in cylinders,, Math. Nachr., 266 (2004), 3. doi: 10.1002/mana.200310139. Google Scholar

[5]

D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields,, McGraw Hill, (1949). Google Scholar

[6]

R. Chalise and R. Khanal, A Kinetic Trajectory Simulation for Magnetized Plasma Sheath,, Institute of Physics Publishing, (2012). Google Scholar

[7]

F. Chen, Introduction to Plasma Physics,, Plenum Press, (1974). Google Scholar

[8]

R. J. Diperna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Inventiones Mathematicae, 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[9]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (2010). doi: 10.1090/gsm/019. Google Scholar

[10]

M. Feldman, S. Y. HA and M. Slemrod, A Geometric level-set formulation of a plasma sheath interface,, Arch. Rat. Mech. Anal., 178 (2005), 81. doi: 10.1007/s00205-005-0368-3. Google Scholar

[11]

Y. Güçlü, The plasma sheath for 1D-1V Vlasov-Poisson solvers,, Invited talk at the Numkin 2013 Conference, (2013). Google Scholar

[12]

Y. Guo, C.-H. Shu and T. Zie, The dynamics of a plane diode,, SIAM J. Math. Anal., 35 (2004), 1617. doi: 10.1137/S0036141003421133. Google Scholar

[13]

O. Kavian, Introduction à la Théorie des Points Critiques et Applications Aux Problèmes Elliptiques,, Springer-Verlage, (1993). Google Scholar

[14]

H. Kohno, J. R. Myra and D. A. D'Ippolito, Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface,, Physics of Plasmas, 20 (2013). Google Scholar

[15]

J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less, Maxwellian plasma at rest,, Institute for Aerospace Studies, (1966). Google Scholar

[16]

P.-H. Maire, Établissement et Comparaison de Modèles Fluides Pour un Plasma Faiblement Ionisé Quasi-neutre. Détermination des Conditions aux Limites à la Paroi,, Thèse de Doctorat (in French) de l'Université Paris 6, (1996). Google Scholar

[17]

G. Manfredi and S. Devaux, Magnetized Plasma-Wall Transition. Consequences for Wall Sputtering and Erosion,, Institute of Physics Publishing, (2008). Google Scholar

[18]

R. E. Marshak, The variational method for asymptotic neutron densities,, Physical Review, 71 (1947), 688. Google Scholar

[19]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions,, National Institute of Standards and Technology, (2010). Google Scholar

[20]

P.-A. Raviart and C. Greengard, A Boundary-Value problem for the stationary Vlasov-Poisson equations: The Plane Diode,, Comm. Pure Appl. Math., 43 (1990), 473. doi: 10.1002/cpa.3160430404. Google Scholar

[21]

K.-U. Riemann, The Bohm criterion and sheath formation,, J. Phys. D: Appl. Phys., 24 (1991). doi: 10.1088/0022-3727/24/4/001. Google Scholar

[22]

T. E. Sheridan, Solution of the Plasma-Sheath Equation with a Cool Maxwellian Ion Source,, AIP Publishing, (2001). Google Scholar

[23]

G. Stampachia and D. Kinderlehrer, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980). Google Scholar

[24]

P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices,, Institute of Physics Publishing, (2000). Google Scholar

[25]

F. Valsaque and G. Manfredi, Numerical study of plasma wall transition in an oblique magnetic field,, Journal of Nuclear Materials, 290-293 (2001), 290. doi: 10.1016/S0022-3115(00)00454-2. Google Scholar

[1]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[2]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[3]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[4]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[5]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[6]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[7]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[8]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[9]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[10]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[11]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[12]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[13]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[14]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[15]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[16]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[17]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[18]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[19]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[20]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]