• Previous Article
    Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma
  • KRM Home
  • This Issue
  • Next Article
    Local well-posedness for the tropical climate model with fractional velocity diffusion
September  2016, 9(3): 571-585. doi: 10.3934/krm.2016007

A kinetic reaction model: Decay to equilibrium and macroscopic limit

1. 

Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria

2. 

Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Received  March 2015 Revised  September 2015 Published  May 2016

We propose a kinetic relaxation-model to describe a generation-recombination reaction of two species. The decay to equilibrium is studied by two recent methods [9,13] for proving hypocoercivity of the linearized equations. Exponential decay of small perturbations can be shown for the full nonlinear problem. The macroscopic/fast-reaction limit is derived rigorously employing entropy decay, resulting in a nonlinear diffusion equation for the difference of the position densities.
Citation: Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007
References:
[1]

M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems,, J. Stat. Phys., 124 (2006), 881. doi: 10.1007/s10955-005-8075-x. Google Scholar

[2]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction,, J. Math. Anal. Appl., 286 (2003), 125. doi: 10.1016/S0022-247X(03)00457-8. Google Scholar

[3]

J. Carrillo, L. Desvillettes and K. Fellner, Fast-reaction limit for the inhomogeneous Aizenman-Bak model,, Kinetic and Related Models, 1 (2008), 127. doi: 10.3934/krm.2008.1.127. Google Scholar

[4]

J. Carrillo, L. Desvillettes and K. Fellner, Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion,, Comm. Part. Diff. Eq., 34 (2009), 1338. doi: 10.1080/03605300903225396. Google Scholar

[5]

I. Choquet, P. Degond and C. Schmeiser, Energy-transport models for charge carriers involving impact ionization in semiconductors,, Transport Theory and Statistical Physics, 32 (2003), 99. Google Scholar

[6]

P. Degond, A. Nouri and C. Schmeiser, Macroscopic models for the ionization in the presence of strong electric fields,, Transport Theory and Stat. Phys., 29 (2000), 551. doi: 10.1080/00411450008205891. Google Scholar

[7]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system,, J. Math. Anal. Appl., 430 (2015), 32. doi: 10.1016/j.jmaa.2015.03.078. Google Scholar

[8]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C.R. Acad. Sci. Paris, 347 (2009), 511. doi: 10.1016/j.crma.2009.02.025. Google Scholar

[9]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass,, Trans. AMS, 367 (2015), 3807. doi: 10.1090/S0002-9947-2015-06012-7. Google Scholar

[10]

F. Golse, From kinetic to macroscopic models,, in Kinetic Equations and Asymptotic Theory, (2000), 41. Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55 (2002), 1104. doi: 10.1002/cpa.10040. Google Scholar

[12]

D. Hilhorst, R. van der Hout and L. A. Peletier, Nonlinear diffusion in the presence of fast reaction,, Nonlinear Anal.: Theory, 41 (2000), 803. doi: 10.1016/S0362-546X(98)00311-3. Google Scholar

[13]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus,, Nonlinearity, 19 (2006), 969. doi: 10.1088/0951-7715/19/4/011. Google Scholar

[14]

J. Polewczak, The kinetic theory of simple reacting spheres: I. Global existence result in a dilute-gas case,, J. Stat. Phys., 100 (2000), 327. doi: 10.1023/A:1018608216136. Google Scholar

[15]

F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects,, Math. Meth. in the Appl. Sci., 14 (1991), 301. doi: 10.1002/mma.1670140503. Google Scholar

[16]

C. Villani, Hypocoercivity,, Memoirs of the AMS 950, (2009). doi: 10.1090/S0065-9266-09-00567-5. Google Scholar

show all references

References:
[1]

M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems,, J. Stat. Phys., 124 (2006), 881. doi: 10.1007/s10955-005-8075-x. Google Scholar

[2]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction,, J. Math. Anal. Appl., 286 (2003), 125. doi: 10.1016/S0022-247X(03)00457-8. Google Scholar

[3]

J. Carrillo, L. Desvillettes and K. Fellner, Fast-reaction limit for the inhomogeneous Aizenman-Bak model,, Kinetic and Related Models, 1 (2008), 127. doi: 10.3934/krm.2008.1.127. Google Scholar

[4]

J. Carrillo, L. Desvillettes and K. Fellner, Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion,, Comm. Part. Diff. Eq., 34 (2009), 1338. doi: 10.1080/03605300903225396. Google Scholar

[5]

I. Choquet, P. Degond and C. Schmeiser, Energy-transport models for charge carriers involving impact ionization in semiconductors,, Transport Theory and Statistical Physics, 32 (2003), 99. Google Scholar

[6]

P. Degond, A. Nouri and C. Schmeiser, Macroscopic models for the ionization in the presence of strong electric fields,, Transport Theory and Stat. Phys., 29 (2000), 551. doi: 10.1080/00411450008205891. Google Scholar

[7]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system,, J. Math. Anal. Appl., 430 (2015), 32. doi: 10.1016/j.jmaa.2015.03.078. Google Scholar

[8]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C.R. Acad. Sci. Paris, 347 (2009), 511. doi: 10.1016/j.crma.2009.02.025. Google Scholar

[9]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass,, Trans. AMS, 367 (2015), 3807. doi: 10.1090/S0002-9947-2015-06012-7. Google Scholar

[10]

F. Golse, From kinetic to macroscopic models,, in Kinetic Equations and Asymptotic Theory, (2000), 41. Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55 (2002), 1104. doi: 10.1002/cpa.10040. Google Scholar

[12]

D. Hilhorst, R. van der Hout and L. A. Peletier, Nonlinear diffusion in the presence of fast reaction,, Nonlinear Anal.: Theory, 41 (2000), 803. doi: 10.1016/S0362-546X(98)00311-3. Google Scholar

[13]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus,, Nonlinearity, 19 (2006), 969. doi: 10.1088/0951-7715/19/4/011. Google Scholar

[14]

J. Polewczak, The kinetic theory of simple reacting spheres: I. Global existence result in a dilute-gas case,, J. Stat. Phys., 100 (2000), 327. doi: 10.1023/A:1018608216136. Google Scholar

[15]

F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects,, Math. Meth. in the Appl. Sci., 14 (1991), 301. doi: 10.1002/mma.1670140503. Google Scholar

[16]

C. Villani, Hypocoercivity,, Memoirs of the AMS 950, (2009). doi: 10.1090/S0065-9266-09-00567-5. Google Scholar

[1]

José A. Carrillo, Laurent Desvillettes, Klemens Fellner. Fast-reaction limit for the inhomogeneous Aizenman-Bak model. Kinetic & Related Models, 2008, 1 (1) : 127-137. doi: 10.3934/krm.2008.1.127

[2]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[3]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[4]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[5]

María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255

[6]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[7]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[8]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[9]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[10]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[11]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15

[12]

Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129

[13]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[14]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[15]

Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741

[16]

Arnaud Debussche, Julien Vovelle. Diffusion limit for a stochastic kinetic problem. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2305-2326. doi: 10.3934/cpaa.2012.11.2305

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[19]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for the Ibragimov-Shabat equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 661-673. doi: 10.3934/dcdss.2016020

[20]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]