September  2015, 8(3): 615-616. doi: 10.3934/krm.2015.8.615

Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system

1. 

Department of Mathematics, Pennsylvania State University, State College, PA 16802

2. 

Department of Mathematics, The University of Akron, Akron, OH 44325

3. 

Brown University, Department of Mathematics and Lefschetz Center for Dynamical Systems, Providence, RI 02912

Published  June 2015

N/A
Citation: Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615
References:
[1]

T. T. Nguyen, T. V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system,, Kinetic and Related Models, 8 (2015), 153. doi: 10.3934/krm.2015.8.153. Google Scholar

show all references

References:
[1]

T. T. Nguyen, T. V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system,, Kinetic and Related Models, 8 (2015), 153. doi: 10.3934/krm.2015.8.153. Google Scholar

[1]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[2]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure & Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[3]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic & Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[4]

Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferro-magnetic chain. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 729-740. doi: 10.3934/dcds.1999.5.729

[5]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[6]

Robert Glassey, Stephen Pankavich, Jack Schaeffer. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinetic & Related Models, 2016, 9 (3) : 455-467. doi: 10.3934/krm.2016003

[7]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[8]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[9]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[10]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[11]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[12]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[13]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[14]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[15]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[16]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[17]

Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems & Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033

[18]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[19]

Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049

[20]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

[Back to Top]