June  2015, 8(2): 235-254. doi: 10.3934/krm.2015.8.235

A kinetic theory description of liquid menisci at the microscale

1. 

Politecnico di Milano, MOX, Dipartimento di Matematica, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

2. 

Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Via La Masa 34, 20156 Milan, Italy, Italy

Received  July 2014 Revised  December 2014 Published  March 2015

A kinetic model for the study of capillary flows in devices with microscale geometry is presented. The model is based on the Enskog-Vlasov kinetic equation and provides a reasonable description of both fluid-fluid and fluid-wall interactions. Numerical solutions are obtained by an extension of the classical Direct Simulation Monte Carlo (DSMC) to dense fluids. The equilibrium properties of liquid menisci between two hydrophilic walls are investigated and the validity of the Laplace-Kelvin equation at the microscale is assessed. The dynamical process which leads to the meniscus breakage is clarified.
Citation: Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235
References:
[1]

M. Allen and D. Tildesley, Computer Simulation of Liquids,, Clarendon Press, (1989).

[2]

R. Ardito, A. Corigliano and A. Frangi, Multiscale finite element models for predicting spontaneous adhesion in MEMS,, Mecanique Industries, 11 (2010), 177. doi: 10.1051/meca/2010028.

[3]

P. Barbante, A. Frezzotti, L. Gibelli and D. Giordano, A kinetic model for collisional effects in dense adsorbed gas layers,, in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics (eds. I. Wysong and A. Garcia), (1333), 458. doi: 10.1063/1.3562690.

[4]

P. Barbante, A. Frezzotti, L. Gibelli, P. Legrenzi, A. Corigliano and A. Frangi, A kinetic model for capillary flows in MEMS,, in Proceedings of the 28th International Symposium on Rarefied Gas Dynamics (eds. M. Mareschal and A. Santos), (1501), 713. doi: 10.1063/1.4769612.

[5]

G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,, Clarendon Press, (1995).

[6]

N. Carnahan and K. Starling, Equation of state for nonattracting rigid spheres,, J. Chem. Phys., 51 (1969), 635. doi: 10.1063/1.1672048.

[7]

C. Cercignani, The Boltzmann Equation and Its Applications,, Springer, (1988). doi: 10.1007/978-1-4612-1039-9.

[8]

S. Cheng and M. Robbins, Capillary adhesion at the nanometer scale,, Phys. Rev. E, 89 (2014). doi: 10.1103/PhysRevE.89.062402.

[9]

J. Eggers, Nonlinear dynamics and breakup of free-surface flows,, Reviews of Modern Physics, 69 (1997), 865. doi: 10.1103/RevModPhys.69.865.

[10]

D. Enskog, Kinetische theorie der wärmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten,, K. Svensk. Vet. Akad. Handl., 63 (1922), 5.

[11]

J. Fischer and M. Methfessel, Born-Green-Yvon approach to the local densities of a fluid at interfaces,, Phys. Rev. A, 22 (1980), 2836. doi: 10.1103/PhysRevA.22.2836.

[12]

A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation,, Phys. Fluids, 9 (1997), 1329. doi: 10.1063/1.869247.

[13]

A. Frezzotti and L. Gibelli, A kinetic model for equilibrium and non-equilibrium structure of the vapor-liquid interface,, in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics (eds. A. Ketsdever and E. Muntz), (2003), 980. doi: 10.1063/1.1581646.

[14]

A. Frezzotti and L. Gibelli, A kinetic model for fluid wall interaction,, Proc. IMechE, 222 (2008), 787. doi: 10.1243/09544062JMES718.

[15]

A. Frezzotti, L. Gibelli and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum,, Phys. Fluids, 17 (2005). doi: 10.1063/1.1824111.

[16]

A. Frezzotti, S. Nedea, A. Markvoort, P. Spijker and L. Gibelli, Comparison of molecular dynamics and kinetic modeling of gas-surface interaction,, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics (ed. T. Abe), (1084), 635. doi: 10.1063/1.3076554.

[17]

M. Grmela, Kinetic equation approach to phase transitions,, J. Stat. Phys., 3 (1971), 347. doi: 10.1007/BF01011389.

[18]

Z. Guo, T. Zhao and Y. Shi, Simple kinetic model for fluid flows in the nanometer scale,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.035301.

[19]

J. Hansen and I. McDonald, Theory of Simple Liquids,, Academic Press, (2006).

[20]

A. Hariri, J. Zu, J. Zu and R. B. Mrad, Modeling of wet stiction in microelectromechanical systems MEMS,, J. Microelectromech. Syst., 16 (2007), 1276. doi: 10.1109/JMEMS.2007.904349.

[21]

J. Hirschfelder, C. Curtiss and R. Bird, The Molecular Theory of Gases and Liquids,, Wiley-Interscience, (1964).

[22]

W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments,, Physical Review Letters, 98 (2007). doi: 10.1103/PhysRevLett.98.064504.

[23]

J. Karkheck and G. Stell, Mean field kinetic theories,, J. Chem. Phys., 75 (1981), 1475. doi: 10.1063/1.442154.

[24]

G. Karniadakis, A. Beskok and A. Narayan, Microflows and Nanoflows: Fundamentals and Simulation,, Springer, (2005).

[25]

R. Maboudian and R. Howe, Critical review: Stiction in surface micromechanical structures,, J. Vac. Sci. Technol. B, 15 (1997), 1.

[26]

J. Rowlinson and B. Widom, Molecular Theory of Capillarity,, Dover Pubns, (2003).

[27]

H. van Beijeren and M. Ernst, The modified Enskog equation,, Physica, 68 (1973), 437.

show all references

References:
[1]

M. Allen and D. Tildesley, Computer Simulation of Liquids,, Clarendon Press, (1989).

[2]

R. Ardito, A. Corigliano and A. Frangi, Multiscale finite element models for predicting spontaneous adhesion in MEMS,, Mecanique Industries, 11 (2010), 177. doi: 10.1051/meca/2010028.

[3]

P. Barbante, A. Frezzotti, L. Gibelli and D. Giordano, A kinetic model for collisional effects in dense adsorbed gas layers,, in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics (eds. I. Wysong and A. Garcia), (1333), 458. doi: 10.1063/1.3562690.

[4]

P. Barbante, A. Frezzotti, L. Gibelli, P. Legrenzi, A. Corigliano and A. Frangi, A kinetic model for capillary flows in MEMS,, in Proceedings of the 28th International Symposium on Rarefied Gas Dynamics (eds. M. Mareschal and A. Santos), (1501), 713. doi: 10.1063/1.4769612.

[5]

G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,, Clarendon Press, (1995).

[6]

N. Carnahan and K. Starling, Equation of state for nonattracting rigid spheres,, J. Chem. Phys., 51 (1969), 635. doi: 10.1063/1.1672048.

[7]

C. Cercignani, The Boltzmann Equation and Its Applications,, Springer, (1988). doi: 10.1007/978-1-4612-1039-9.

[8]

S. Cheng and M. Robbins, Capillary adhesion at the nanometer scale,, Phys. Rev. E, 89 (2014). doi: 10.1103/PhysRevE.89.062402.

[9]

J. Eggers, Nonlinear dynamics and breakup of free-surface flows,, Reviews of Modern Physics, 69 (1997), 865. doi: 10.1103/RevModPhys.69.865.

[10]

D. Enskog, Kinetische theorie der wärmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten,, K. Svensk. Vet. Akad. Handl., 63 (1922), 5.

[11]

J. Fischer and M. Methfessel, Born-Green-Yvon approach to the local densities of a fluid at interfaces,, Phys. Rev. A, 22 (1980), 2836. doi: 10.1103/PhysRevA.22.2836.

[12]

A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation,, Phys. Fluids, 9 (1997), 1329. doi: 10.1063/1.869247.

[13]

A. Frezzotti and L. Gibelli, A kinetic model for equilibrium and non-equilibrium structure of the vapor-liquid interface,, in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics (eds. A. Ketsdever and E. Muntz), (2003), 980. doi: 10.1063/1.1581646.

[14]

A. Frezzotti and L. Gibelli, A kinetic model for fluid wall interaction,, Proc. IMechE, 222 (2008), 787. doi: 10.1243/09544062JMES718.

[15]

A. Frezzotti, L. Gibelli and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum,, Phys. Fluids, 17 (2005). doi: 10.1063/1.1824111.

[16]

A. Frezzotti, S. Nedea, A. Markvoort, P. Spijker and L. Gibelli, Comparison of molecular dynamics and kinetic modeling of gas-surface interaction,, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics (ed. T. Abe), (1084), 635. doi: 10.1063/1.3076554.

[17]

M. Grmela, Kinetic equation approach to phase transitions,, J. Stat. Phys., 3 (1971), 347. doi: 10.1007/BF01011389.

[18]

Z. Guo, T. Zhao and Y. Shi, Simple kinetic model for fluid flows in the nanometer scale,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.035301.

[19]

J. Hansen and I. McDonald, Theory of Simple Liquids,, Academic Press, (2006).

[20]

A. Hariri, J. Zu, J. Zu and R. B. Mrad, Modeling of wet stiction in microelectromechanical systems MEMS,, J. Microelectromech. Syst., 16 (2007), 1276. doi: 10.1109/JMEMS.2007.904349.

[21]

J. Hirschfelder, C. Curtiss and R. Bird, The Molecular Theory of Gases and Liquids,, Wiley-Interscience, (1964).

[22]

W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments,, Physical Review Letters, 98 (2007). doi: 10.1103/PhysRevLett.98.064504.

[23]

J. Karkheck and G. Stell, Mean field kinetic theories,, J. Chem. Phys., 75 (1981), 1475. doi: 10.1063/1.442154.

[24]

G. Karniadakis, A. Beskok and A. Narayan, Microflows and Nanoflows: Fundamentals and Simulation,, Springer, (2005).

[25]

R. Maboudian and R. Howe, Critical review: Stiction in surface micromechanical structures,, J. Vac. Sci. Technol. B, 15 (1997), 1.

[26]

J. Rowlinson and B. Widom, Molecular Theory of Capillarity,, Dover Pubns, (2003).

[27]

H. van Beijeren and M. Ernst, The modified Enskog equation,, Physica, 68 (1973), 437.

[1]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[2]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[3]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[4]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[5]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[6]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[7]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[8]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[9]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[10]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[11]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[12]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[13]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[14]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[15]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[16]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

[17]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[18]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[19]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[20]

B. Wiwatanapataphee, Theeradech Mookum, Yong Hong Wu. Numerical simulation of two-fluid flow and meniscus interface movement in the electromagnetic continuous steel casting process. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1171-1183. doi: 10.3934/dcdsb.2011.16.1171

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]