September  2014, 7(3): 591-604. doi: 10.3934/krm.2014.7.591

On a regularized system of self-gravitating particles

1. 

Department of Technomathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Received  April 2014 Revised  May 2014 Published  July 2014

We consider a regularized macroscopic model describing a system of self-gravitating particles. We study the existence and uniqueness of nonnegative stationary solutions and allude the differences to results obtained from classical gravitational models. The system is analyzed on a convex, bounded domain up to three spatial dimensions, subject to Neumann boundary conditions for the particle density, and Dirichlet boundary condition for the self-interacting potential. Finally, we show numerical simulations underlining our analytical results.
Citation: René Pinnau, Oliver Tse. On a regularized system of self-gravitating particles. Kinetic & Related Models, 2014, 7 (3) : 591-604. doi: 10.3934/krm.2014.7.591
References:
[1]

N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model,, Z. angew. Math. Phys., 49 (1998), 251. doi: 10.1007/s000330050218. Google Scholar

[2]

C. Bennett and R. C. Sharpley, Interpolation of Operators,, Pure and Applied Mathematics, (1988). Google Scholar

[3]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I,, Colloq. Math., 66 (1994), 319. Google Scholar

[4]

E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description,, Comm. Math. Phys., 143 (1992), 501. doi: 10.1007/BF02099262. Google Scholar

[5]

E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, II,, Comm. Math. Phys., 174 (1995), 229. doi: 10.1007/BF02099602. Google Scholar

[6]

D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 73. doi: 10.1016/j.anihpc.2009.07.006. Google Scholar

[7]

A. Dall'Aglio, D. Giachetti and J. -P. Puel, Nonlinear elliptic equations with natural growth in general domains,, Ann. Mat. Pura Appl., 181 (2002), 407. doi: 10.1007/s102310100046. Google Scholar

[8]

V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient,, J. Inequal. Appl., 3 (1999), 109. doi: 10.1155/S1025583499000077. Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Grundlehren der Mathematischen Wissenschaften, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[10]

A. Jüngel and R. Pinnau, Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems,, SIAM J. Math. Anal, 32 (2000), 760. doi: 10.1137/S0036141099360269. Google Scholar

[11]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Pure and Applied Mathematics, (1980). Google Scholar

[12]

J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder,, (French) [Some results of Višik on nonlinear elliptic problems by the methods of Minty-Browder], 93 (1965), 97. Google Scholar

[13]

M. Montenegro and M. Montenegro, Existence and nonexistence of solutions for quasilinear elliptic equations,, J. Math. Anal. Appl., 245 (2000), 303. doi: 10.1006/jmaa.1999.6697. Google Scholar

[14]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana. Univ. Math. J., 20 (1971), 1077. Google Scholar

[15]

R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift-diffusion model,, SIAM J. Numer. Anal., 37 (1999), 211. doi: 10.1137/S0036142998341039. Google Scholar

[16]

T. Suzuki, Free Energy and Self-Interacting Particles,, Progress in Nonlinear Differential Equations and their Applications, (2005). doi: 10.1007/0-8176-4436-9. Google Scholar

[17]

O. Tse, On the effects of the Bohm potential on a macroscopic system of self-interacting particles,, J. Math. Anal. Appl., 418 (2014), 796. doi: 10.1016/j.jmaa.2014.04.021. Google Scholar

[18]

J. Winter, Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems,, Phys. Rev. D, 32 (1985), 1871. doi: 10.1103/PhysRevD.32.1871. Google Scholar

show all references

References:
[1]

N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model,, Z. angew. Math. Phys., 49 (1998), 251. doi: 10.1007/s000330050218. Google Scholar

[2]

C. Bennett and R. C. Sharpley, Interpolation of Operators,, Pure and Applied Mathematics, (1988). Google Scholar

[3]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I,, Colloq. Math., 66 (1994), 319. Google Scholar

[4]

E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description,, Comm. Math. Phys., 143 (1992), 501. doi: 10.1007/BF02099262. Google Scholar

[5]

E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, II,, Comm. Math. Phys., 174 (1995), 229. doi: 10.1007/BF02099602. Google Scholar

[6]

D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 73. doi: 10.1016/j.anihpc.2009.07.006. Google Scholar

[7]

A. Dall'Aglio, D. Giachetti and J. -P. Puel, Nonlinear elliptic equations with natural growth in general domains,, Ann. Mat. Pura Appl., 181 (2002), 407. doi: 10.1007/s102310100046. Google Scholar

[8]

V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient,, J. Inequal. Appl., 3 (1999), 109. doi: 10.1155/S1025583499000077. Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Grundlehren der Mathematischen Wissenschaften, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[10]

A. Jüngel and R. Pinnau, Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems,, SIAM J. Math. Anal, 32 (2000), 760. doi: 10.1137/S0036141099360269. Google Scholar

[11]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Pure and Applied Mathematics, (1980). Google Scholar

[12]

J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder,, (French) [Some results of Višik on nonlinear elliptic problems by the methods of Minty-Browder], 93 (1965), 97. Google Scholar

[13]

M. Montenegro and M. Montenegro, Existence and nonexistence of solutions for quasilinear elliptic equations,, J. Math. Anal. Appl., 245 (2000), 303. doi: 10.1006/jmaa.1999.6697. Google Scholar

[14]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana. Univ. Math. J., 20 (1971), 1077. Google Scholar

[15]

R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift-diffusion model,, SIAM J. Numer. Anal., 37 (1999), 211. doi: 10.1137/S0036142998341039. Google Scholar

[16]

T. Suzuki, Free Energy and Self-Interacting Particles,, Progress in Nonlinear Differential Equations and their Applications, (2005). doi: 10.1007/0-8176-4436-9. Google Scholar

[17]

O. Tse, On the effects of the Bohm potential on a macroscopic system of self-interacting particles,, J. Math. Anal. Appl., 418 (2014), 796. doi: 10.1016/j.jmaa.2014.04.021. Google Scholar

[18]

J. Winter, Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems,, Phys. Rev. D, 32 (1985), 1871. doi: 10.1103/PhysRevD.32.1871. Google Scholar

[1]

Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113

[2]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[3]

Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451

[4]

Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705

[5]

Filippo Gazzola, Lorenzo Pisani. Remarks on quasilinear elliptic equations as models for elementary particles. Conference Publications, 2003, 2003 (Special) : 336-341. doi: 10.3934/proc.2003.2003.336

[6]

Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Large solutions of elliptic systems of second order and applications to the biharmonic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 411-432. doi: 10.3934/dcds.2012.32.411

[7]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[8]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[9]

José A. Carrillo, Raluca Eftimie, Franca Hoffmann. Non-local kinetic and macroscopic models for self-organised animal aggregations. Kinetic & Related Models, 2015, 8 (3) : 413-441. doi: 10.3934/krm.2015.8.413

[10]

Jean Dolbeault, Robert Stańczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 139-154. doi: 10.3934/dcds.2015.35.139

[11]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[12]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[13]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[14]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[15]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[16]

Alexander Vibe, Nicole Marheineke. Modeling of macroscopic stresses in a dilute suspension of small weakly inertial particles. Kinetic & Related Models, 2018, 11 (6) : 1443-1474. doi: 10.3934/krm.2018057

[17]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[18]

Antonio Marigonda. Second order conditions for the controllability of nonlinear systems with drift. Communications on Pure & Applied Analysis, 2006, 5 (4) : 861-885. doi: 10.3934/cpaa.2006.5.861

[19]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[20]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]