• Previous Article
    New insights into the numerical solution of the Boltzmann transport equation for photons
  • KRM Home
  • This Issue
  • Next Article
    A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations
September  2014, 7(3): 463-476. doi: 10.3934/krm.2014.7.463

Numerical simulations of degenerate transport problems

1. 

Centre de Mathématiques et de leurs Applications, CMLA UMR 8536, École Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France

2. 

Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1 - 27100 Pavia

Received  September 2013 Revised  February 2014 Published  July 2014

We consider in this article the monokinetic linear Boltzmann equation in two space dimensions with degenerate cross section and produce, by means of a finite-volume method, numerical simulations of the large-time asymptotics of the solution.
    The numerical computations are performed in the $2Dx-1Dv$ phase space on Cartesian grids and deal with both cross sections satisfying the geometrical condition and cross sections that do not satisfy it.
    The numerical simulations confirm the theoretical results on the long-time behaviour of degenerate kinetic equations for cross sections satisfying the geometrical condition. Moreover, they suggest that, for general non-trivial degenerate cross sections whose support contains a ball, the theoretical upper bound of order $t^{-1/2}$ for the time decay rate (in $L^2$-sense) can actually be reached.
Citation: Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463
References:
[1]

E. Bernard and F. Salvarani, Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model,, J. Stat. Phys., 153 (2013), 363. doi: 10.1007/s10955-013-0825-6. Google Scholar

[2]

E. Bernard and F. Salvarani, On the exponential decay to equilibrium of the degenerate linear Boltzmann equation,, J. Funct. Anal., 265 (2013), 1934. doi: 10.1016/j.jfa.2013.06.012. Google Scholar

[3]

E. Bernard and F. Salvarani, On the convergence to equilibrium for degenerate transport problems,, Arch. Ration. Mech. Anal., 208 (2013), 977. doi: 10.1007/s00205-012-0608-2. Google Scholar

[4]

S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations,, Journal of Computational Physics, 266 (2014), 22. doi: 10.1016/j.jcp.2014.01.050. Google Scholar

[5]

K. M. Case and P. F. Zweifel, Linear Transport Theory,, Addison-Wesley Publishing Co., (1967). Google Scholar

[6]

F. De Vuyst and F. Salvarani, GPU-accelerated numerical simulations of the Knudsen gas on time-dependent domains,, Comput. Phys. Comm., 184 (2013), 532. doi: 10.1016/j.cpc.2012.10.004. Google Scholar

[7]

L. Desvillettes and F. Salvarani, Asymptotic behavior of degenerate linear transport equations,, Bull. Sci. Math., 133 (2009), 848. doi: 10.1016/j.bulsci.2008.09.001. Google Scholar

[8]

S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation,, Quart. J. Mech. Appl. Math., 4 (1951), 129. doi: 10.1093/qjmam/4.2.129. Google Scholar

[9]

D. Han-Kwan and M. Léautaud, Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium,, , (2014). Google Scholar

[10]

A. Kurganov and J. Rauch, The order of accuracy of quadrature formulae for periodic functions,, in Advances in Phase Space Analysis of Partial Differential Equations, (2009), 155. doi: 10.1007/978-0-8176-4861-9_9. Google Scholar

[11]

E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport,, John Wiley and Sons, (1984). Google Scholar

[12]

M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory,, Series on Advances in Mathematics for Applied Sciences, (1997). doi: 10.1142/9789812819833. Google Scholar

[13]

L. Neumann and C. Mouhot, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus,, Nonlinearity, 19 (2006), 969. doi: 10.1088/0951-7715/19/4/011. Google Scholar

[14]

F. Salvarani, On the linear Boltzmann equation in evolutionary domains with absorbing boundary,, J. Phys. A: Math. Theor., 46 (2013). doi: 10.1088/1751-8113/46/35/355501. Google Scholar

[15]

G. I. Taylor, Diffusion by continuous movements,, Proc. London Math. Soc., S2-20 (1922), 2. doi: 10.1112/plms/s2-20.1.196. Google Scholar

[16]

S. Ukai, N. Point and H. Ghidouche, Sur la solution globale du problème mixte de l'équation de Boltzmann nonlinéaire,, Journal de Mathématiques Pures et Appliquées. Neuvième Série, 57 (1978), 203. Google Scholar

show all references

References:
[1]

E. Bernard and F. Salvarani, Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model,, J. Stat. Phys., 153 (2013), 363. doi: 10.1007/s10955-013-0825-6. Google Scholar

[2]

E. Bernard and F. Salvarani, On the exponential decay to equilibrium of the degenerate linear Boltzmann equation,, J. Funct. Anal., 265 (2013), 1934. doi: 10.1016/j.jfa.2013.06.012. Google Scholar

[3]

E. Bernard and F. Salvarani, On the convergence to equilibrium for degenerate transport problems,, Arch. Ration. Mech. Anal., 208 (2013), 977. doi: 10.1007/s00205-012-0608-2. Google Scholar

[4]

S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations,, Journal of Computational Physics, 266 (2014), 22. doi: 10.1016/j.jcp.2014.01.050. Google Scholar

[5]

K. M. Case and P. F. Zweifel, Linear Transport Theory,, Addison-Wesley Publishing Co., (1967). Google Scholar

[6]

F. De Vuyst and F. Salvarani, GPU-accelerated numerical simulations of the Knudsen gas on time-dependent domains,, Comput. Phys. Comm., 184 (2013), 532. doi: 10.1016/j.cpc.2012.10.004. Google Scholar

[7]

L. Desvillettes and F. Salvarani, Asymptotic behavior of degenerate linear transport equations,, Bull. Sci. Math., 133 (2009), 848. doi: 10.1016/j.bulsci.2008.09.001. Google Scholar

[8]

S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation,, Quart. J. Mech. Appl. Math., 4 (1951), 129. doi: 10.1093/qjmam/4.2.129. Google Scholar

[9]

D. Han-Kwan and M. Léautaud, Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium,, , (2014). Google Scholar

[10]

A. Kurganov and J. Rauch, The order of accuracy of quadrature formulae for periodic functions,, in Advances in Phase Space Analysis of Partial Differential Equations, (2009), 155. doi: 10.1007/978-0-8176-4861-9_9. Google Scholar

[11]

E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport,, John Wiley and Sons, (1984). Google Scholar

[12]

M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory,, Series on Advances in Mathematics for Applied Sciences, (1997). doi: 10.1142/9789812819833. Google Scholar

[13]

L. Neumann and C. Mouhot, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus,, Nonlinearity, 19 (2006), 969. doi: 10.1088/0951-7715/19/4/011. Google Scholar

[14]

F. Salvarani, On the linear Boltzmann equation in evolutionary domains with absorbing boundary,, J. Phys. A: Math. Theor., 46 (2013). doi: 10.1088/1751-8113/46/35/355501. Google Scholar

[15]

G. I. Taylor, Diffusion by continuous movements,, Proc. London Math. Soc., S2-20 (1922), 2. doi: 10.1112/plms/s2-20.1.196. Google Scholar

[16]

S. Ukai, N. Point and H. Ghidouche, Sur la solution globale du problème mixte de l'équation de Boltzmann nonlinéaire,, Journal de Mathématiques Pures et Appliquées. Neuvième Série, 57 (1978), 203. Google Scholar

[1]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[2]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[3]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[4]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic & Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[5]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[6]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[7]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[8]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[9]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[10]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[11]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[12]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[13]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[14]

Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199

[15]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[16]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[17]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2019060

[18]

Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543

[19]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[20]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]