• Previous Article
    Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition
  • KRM Home
  • This Issue
  • Next Article
    The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits
December  2013, 6(4): 883-892. doi: 10.3934/krm.2013.6.883

Energy estimate for a linear symmetric hyperbolic-parabolic system in half line

1. 

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

2. 

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552

Received  August 2013 Revised  September 2013 Published  November 2013

In the present paper, we study the initial boundary value problem for a linear symmetric hyperbolic-parabolic system in one-dimensional half space. We obtain a priori estimates by using an energy method developed by Matsumura--Nishida for half space problem under the assumption that a stability condition of Shizuta--Kawashima type holds. The method developed in the present paper is applicable to showing the nonlinear stability of boundary layer solutions for a system of viscous conservation laws in half space.
Citation: Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883
References:
[1]

Y. Kagei and S. Kawashima, Local solvability of an initial boundary value problem for a quasilinear hyperbolic-parabolic system,, J. Hyperbolic Differ. Equ., 3 (2006), 195. doi: 10.1142/S0219891606000768.

[2]

T. Kato, Linear evolution equations of hyperbolic type, II,, J. Math. Soc. Japan, 25 (1973), 648. doi: 10.2969/jmsj/02540648.

[3]

S. Kawashima, Systems of A Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, Doctoral Thesis, (1984).

[4]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh, 106 (1987), 169. doi: 10.1017/S0308210500018308.

[5]

S. Kawashima, T. Nakamura, S. Nishibata and P. Zhu, Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate,, Math. Models Methods Appl. Sci., 20 (2010), 2201. doi: 10.1142/S0218202510004908.

[6]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.

[7]

B. Kwon, M. Suzuki and M. Takayama, Large-time behavior of solutions to an outflow problem for a shallow water model,, J. Differential Equations, 255 (2013), 1883. doi: 10.1016/j.jde.2013.05.025.

[8]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.

[9]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445. doi: 10.1007/BF01214738.

[10]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas,, Comm. Math. Phys., 222 (2001), 449. doi: 10.1007/s002200100517.

[11]

T. Nakamura and S. Nishibata, Stationary waves for symmetric hyperbolic-parabolic systems in half line and application to fluid dynamics,, preprint., ().

[12]

T. Nakamura and S. Nishibata, Convergence rate toward planar stationary waves for compressible viscous fluid in multi-dimensional half space,, SIAM J. Math. Anal., 41 (2009), 1757. doi: 10.1137/090755357.

[13]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas,, J. Hyperbolic Differ. Equ., 8 (2011), 651. doi: 10.1142/S0219891611002524.

[14]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94. doi: 10.1016/j.jde.2007.06.016.

[15]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.

[16]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics,, Japan J. Appl. Math., 1 (1984), 435. doi: 10.1007/BF03167068.

show all references

References:
[1]

Y. Kagei and S. Kawashima, Local solvability of an initial boundary value problem for a quasilinear hyperbolic-parabolic system,, J. Hyperbolic Differ. Equ., 3 (2006), 195. doi: 10.1142/S0219891606000768.

[2]

T. Kato, Linear evolution equations of hyperbolic type, II,, J. Math. Soc. Japan, 25 (1973), 648. doi: 10.2969/jmsj/02540648.

[3]

S. Kawashima, Systems of A Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, Doctoral Thesis, (1984).

[4]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh, 106 (1987), 169. doi: 10.1017/S0308210500018308.

[5]

S. Kawashima, T. Nakamura, S. Nishibata and P. Zhu, Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate,, Math. Models Methods Appl. Sci., 20 (2010), 2201. doi: 10.1142/S0218202510004908.

[6]

S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.

[7]

B. Kwon, M. Suzuki and M. Takayama, Large-time behavior of solutions to an outflow problem for a shallow water model,, J. Differential Equations, 255 (2013), 1883. doi: 10.1016/j.jde.2013.05.025.

[8]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.

[9]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445. doi: 10.1007/BF01214738.

[10]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas,, Comm. Math. Phys., 222 (2001), 449. doi: 10.1007/s002200100517.

[11]

T. Nakamura and S. Nishibata, Stationary waves for symmetric hyperbolic-parabolic systems in half line and application to fluid dynamics,, preprint., ().

[12]

T. Nakamura and S. Nishibata, Convergence rate toward planar stationary waves for compressible viscous fluid in multi-dimensional half space,, SIAM J. Math. Anal., 41 (2009), 1757. doi: 10.1137/090755357.

[13]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas,, J. Hyperbolic Differ. Equ., 8 (2011), 651. doi: 10.1142/S0219891611002524.

[14]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94. doi: 10.1016/j.jde.2007.06.016.

[15]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.

[16]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics,, Japan J. Appl. Math., 1 (1984), 435. doi: 10.1007/BF03167068.

[1]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[2]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[3]

Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59

[4]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[5]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[6]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[7]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[8]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[9]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[10]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[11]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[12]

Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control & Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481

[13]

Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048

[14]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[15]

Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic & Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865

[16]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[17]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[18]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[19]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[20]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]