December  2013, 6(4): 671-686. doi: 10.3934/krm.2013.6.671

A Milne problem from a Bose condensate with excitations

1. 

Mathematical Sciences, 41296 Göteborg, Sweden

2. 

LATP, Aix-Marseille University, France

Received  March 2013 Revised  June 2013 Published  November 2013

This paper deals with a half-space linearized problem for the distribution function of the excitations in a Bose gas close to equilibrium. Existence and uniqueness of the solution, as well as its asymptotic properties are proven for a given energy flow. The problem differs from the ones for the classical Boltzmann and related equations, where the hydrodynamic mass flow along the half-line is constant. Here it is no more constant. Instead we use the energy flow which is constant, but no more hydrodynamic.
Citation: Leif Arkeryd, Anne Nouri. A Milne problem from a Bose condensate with excitations. Kinetic & Related Models, 2013, 6 (4) : 671-686. doi: 10.3934/krm.2013.6.671
References:
[1]

L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations - a kinetic model,, Commun. Math. Phys., 310 (2012), 765. doi: 10.1007/s00220-012-1415-1. Google Scholar

[2]

L. Arkeryd and A. Nouri, Bose Condensates in Interaction with Excitations - A Two-Component, Space Dependent Model Close to Equilibrium,, in preparation., (). Google Scholar

[3]

L. Arkeryd and A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model,, J. Stat. Phys., 99 (2000), 993. doi: 10.1023/A:1018655815285. Google Scholar

[4]

A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamic systems,, in Lecture Notes on the discretization of the Boltzmann equation (eds. World Sci. Pub. I), 63 (2003), 203. doi: 10.1142/9789812796905_0008. Google Scholar

[5]

C. Bardos, R. E. Caflish and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas,, Commun. Pure Appl. Math., 39 (1986), 323. doi: 10.1002/cpa.3160390304. Google Scholar

[6]

C. Bardos, F. Golse and Y. Sone, Half-space problems for the Boltzmann equation: A survey,, J. Stat. Phys., 124 (2006), 275. doi: 10.1007/s10955-006-9077-z. Google Scholar

[7]

A. V. Bobylev and G. Toscani, Two-dimensional half space problems for the Broadwell discrete velocity model,, Contin. Mech. Thermodyn., 8 (1996), 257. doi: 10.1007/s001610050043. Google Scholar

[8]

C. Cercignani, Half-space problems in the kinetic theory of gases,, Trends in applications of pure mathematics to mechanics (Bad Honnef, 249 (1986), 35. doi: 10.1007/BFb0016381. Google Scholar

[9]

F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems,, Commun. Pure Appl. Math., 41 (1988), 409. doi: 10.1002/cpa.3160410403. Google Scholar

[10]

C. Cercignani, R. Marra and R. Esposito, The Milne problem with a force term,, Transport Theory and Statistical Physics, 27 (1998), 1. doi: 10.1080/00411459808205139. Google Scholar

[11]

F. Golse and F. Poupaud, Stationary solutions of the linearized Boltzmann equation in a half-space,, Math. Methods Appl. Sci., 11 (1989), 483. doi: 10.1002/mma.1670110406. Google Scholar

[12]

N. Maslova, The Kramers problems in the kinetic theory of gases,, USSR Comput. Math. Phys., 22 (1982), 208. Google Scholar

[13]

N. Maslova, Nonlinear Evolution Equations,, Kinetic approach. Series on Advances in Mathematics for Applied Sciences, (1993). Google Scholar

[14]

F. Poupaud, Diffusion approximation of the linear semiconductor equation: analysis of boundary layers,, Asymptotic Analysis, 4 (1991), 293. Google Scholar

[15]

Y. Sone, Kinetic Theory and Fluid Dynamics,, Birkhauser Boston, (2002). Google Scholar

[16]

Y. Sone, Molecular Gas Dynamics,, Theory, (2007). doi: 10.1007/978-0-8176-4573-1. Google Scholar

[17]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: I. Existence,, Commun. Math. Phys., 236 (2003), 373. doi: 10.1007/s00220-003-0822-8. Google Scholar

[18]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear stability of boundary layers of the Boltzmann equation; I. The case $\mathcalM_\infty <-1$,, Commun. Math. Phys., 244 (2004), 99. doi: 10.1007/s00220-003-0976-4. Google Scholar

show all references

References:
[1]

L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations - a kinetic model,, Commun. Math. Phys., 310 (2012), 765. doi: 10.1007/s00220-012-1415-1. Google Scholar

[2]

L. Arkeryd and A. Nouri, Bose Condensates in Interaction with Excitations - A Two-Component, Space Dependent Model Close to Equilibrium,, in preparation., (). Google Scholar

[3]

L. Arkeryd and A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model,, J. Stat. Phys., 99 (2000), 993. doi: 10.1023/A:1018655815285. Google Scholar

[4]

A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamic systems,, in Lecture Notes on the discretization of the Boltzmann equation (eds. World Sci. Pub. I), 63 (2003), 203. doi: 10.1142/9789812796905_0008. Google Scholar

[5]

C. Bardos, R. E. Caflish and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas,, Commun. Pure Appl. Math., 39 (1986), 323. doi: 10.1002/cpa.3160390304. Google Scholar

[6]

C. Bardos, F. Golse and Y. Sone, Half-space problems for the Boltzmann equation: A survey,, J. Stat. Phys., 124 (2006), 275. doi: 10.1007/s10955-006-9077-z. Google Scholar

[7]

A. V. Bobylev and G. Toscani, Two-dimensional half space problems for the Broadwell discrete velocity model,, Contin. Mech. Thermodyn., 8 (1996), 257. doi: 10.1007/s001610050043. Google Scholar

[8]

C. Cercignani, Half-space problems in the kinetic theory of gases,, Trends in applications of pure mathematics to mechanics (Bad Honnef, 249 (1986), 35. doi: 10.1007/BFb0016381. Google Scholar

[9]

F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems,, Commun. Pure Appl. Math., 41 (1988), 409. doi: 10.1002/cpa.3160410403. Google Scholar

[10]

C. Cercignani, R. Marra and R. Esposito, The Milne problem with a force term,, Transport Theory and Statistical Physics, 27 (1998), 1. doi: 10.1080/00411459808205139. Google Scholar

[11]

F. Golse and F. Poupaud, Stationary solutions of the linearized Boltzmann equation in a half-space,, Math. Methods Appl. Sci., 11 (1989), 483. doi: 10.1002/mma.1670110406. Google Scholar

[12]

N. Maslova, The Kramers problems in the kinetic theory of gases,, USSR Comput. Math. Phys., 22 (1982), 208. Google Scholar

[13]

N. Maslova, Nonlinear Evolution Equations,, Kinetic approach. Series on Advances in Mathematics for Applied Sciences, (1993). Google Scholar

[14]

F. Poupaud, Diffusion approximation of the linear semiconductor equation: analysis of boundary layers,, Asymptotic Analysis, 4 (1991), 293. Google Scholar

[15]

Y. Sone, Kinetic Theory and Fluid Dynamics,, Birkhauser Boston, (2002). Google Scholar

[16]

Y. Sone, Molecular Gas Dynamics,, Theory, (2007). doi: 10.1007/978-0-8176-4573-1. Google Scholar

[17]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: I. Existence,, Commun. Math. Phys., 236 (2003), 373. doi: 10.1007/s00220-003-0822-8. Google Scholar

[18]

S. Ukai, T. Yang and S.-H. Yu, Nonlinear stability of boundary layers of the Boltzmann equation; I. The case $\mathcalM_\infty <-1$,, Commun. Math. Phys., 244 (2004), 99. doi: 10.1007/s00220-003-0976-4. Google Scholar

[1]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[2]

J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic & Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345

[3]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[4]

Stéphane Brull. Problem of evaporation-condensation for a two component gas in the slab. Kinetic & Related Models, 2008, 1 (2) : 185-221. doi: 10.3934/krm.2008.1.185

[5]

Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079

[6]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic & Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[7]

Vadym Vekslerchik, Víctor M. Pérez-García. Exact solution of the two-mode model of multicomponent Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 179-192. doi: 10.3934/dcdsb.2003.3.179

[8]

Thibaut Allemand. Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kinetic & Related Models, 2009, 2 (2) : 379-402. doi: 10.3934/krm.2009.2.379

[9]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[10]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[11]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[12]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic & Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[13]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[14]

Carole Guillevin, Rémy Guillevin, Alain Miranville, Angélique Perrillat-Mercerot. Analysis of a mathematical model for brain lactate kinetics. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1225-1242. doi: 10.3934/mbe.2018056

[15]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[16]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[17]

Takeshi Fukao, Nobuyuki Kenmochi. A thermohydraulics model with temperature dependent constraint on velocity fields. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 17-34. doi: 10.3934/dcdss.2014.7.17

[18]

Roberto Garra. Confinement of a hot temperature patch in the modified SQG model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2407-2416. doi: 10.3934/dcdsb.2018258

[19]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

[20]

Isabelle Choquet, Brigitte Lucquin-Desreux. Non equilibrium ionization in magnetized two-temperature thermal plasma. Kinetic & Related Models, 2011, 4 (3) : 669-700. doi: 10.3934/krm.2011.4.669

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]