September  2013, 6(3): 589-599. doi: 10.3934/krm.2013.6.589

On the uniqueness for coagulation and multiple fragmentation equation

1. 

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria

Received  January 2013 Revised  March 2013 Published  May 2013

In this article, the uniqueness of weak solutions to the continuous coagulation and multiple fragmentation equation is proved for a large range of unbounded coagulation and multiple fragmentation kernels. The multiple fragmentation kernels may have a singularity at origin. This work generalizes the preceding ones, by including some physically relevant coagulation and fragmentation kernels which were not considered before.
Citation: Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic & Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589
References:
[1]

M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers,, Comm. Math. Phys., 65 (1979), 203. doi: 10.1007/BF01197880. Google Scholar

[2]

D. J. Aldous, Deterministic and stochastic model for coalescence (aggregation and coagulation): A review of the mean-field theory and probabilists,, Bernoulli, 5 (1999), 3. doi: 10.2307/3318611. Google Scholar

[3]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation,, J. Statist. Phys., 61 (1990), 203. doi: 10.1007/BF01013961. Google Scholar

[4]

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates,, J. Math. Anal. Appl., 391 (2012), 312. doi: 10.1016/j.jmaa.2012.02.002. Google Scholar

[5]

J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case,, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 231. doi: 10.1017/S0308210500027888. Google Scholar

[6]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equation with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892. doi: 10.1006/jmaa.1995.1210. Google Scholar

[7]

P. B. Dubovskiĭ and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation,, Math. Meth. Appl. Sci., 19 (1996), 571. doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q. Google Scholar

[8]

M. Escobedo, Ph. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models,, J. Differential Equations, 195 (2003), 143. doi: 10.1016/S0022-0396(03)00134-7. Google Scholar

[9]

A. K. Giri, "Mathematical and Numerical Analysis for Coagulation-Fragmentation Equations,", Ph.D thesis, (2010). Google Scholar

[10]

A. K. Giri, J. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation,, J. Math. Anal. Appl., 374 (2011), 71. doi: 10.1016/j.jmaa.2010.08.037. Google Scholar

[11]

A. K. Giri and G. Warnecke, Uniqueness for the continuous coagulation-fragmentation equation with strong fragmentation,, Z. Angew. Math. Phys., 62 (2011), 1047. doi: 10.1007/s00033-011-0129-0. Google Scholar

[12]

A. K. Giri, Ph. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation,, Nonlinear Analysis, 75 (2012), 2199. doi: 10.1016/j.na.2011.10.021. Google Scholar

[13]

J. Koch, W. Hackbusch and K. Sundmacher, H-matrix methods for linear and quasi-linear integral operators appearing in population balances,, Comput. Chem. Eng., 31 (2007), 745. Google Scholar

[14]

W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation,, Math. Methods Appl. Sci., 27 (2004), 703. doi: 10.1002/mma.496. Google Scholar

[15]

Ph. Laurençot, On a class of continuous coagulation-fragmentation equations,, J. Differential Equations, 167 (2000), 245. doi: 10.1006/jdeq.2000.3809. Google Scholar

[16]

Ph. Laurençot, The discrete coagulation equation with multiple fragmentation,, Proc. Edinburgh Math. Soc. (2), 45 (2002), 67. doi: 10.1017/S0013091500000316. Google Scholar

[17]

Ph. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219. doi: 10.1017/S0308210500002080. Google Scholar

[18]

Ph. Laurençot and S. Mischler, On coalescence equations and related models,, in, (2004), 321. Google Scholar

[19]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation,, Phys. Rev. Lett., 58 (1987), 892. doi: 10.1103/PhysRevLett.58.892. Google Scholar

[20]

D. J. McLaughlin, W. Lamb and A. C. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation,, SIAM J. Math. Anal., 28 (1997), 1173. doi: 10.1137/S0036141095291713. Google Scholar

[21]

Z. A. Melzak, A scalar transport equation,, Trans. Amer. Math. Soc., 85 (1957), 547. doi: 10.1090/S0002-9947-1957-0087880-6. Google Scholar

[22]

T. W. Peterson, Similarity solutions for the population balance equation describing particle fragmentation,, Aerosol. Sci. Technol., 5 (1986), 93. doi: 10.1080/02786828608959079. Google Scholar

[23]

D. J. Smit, M. J. Hounslow and W. R. Paterson, Aggregation and gelation-I. Analytical solutions for cst and batch operation,, Chem. Eng. Sci., 49 (1994), 1025. doi: 10.1016/0009-2509(94)80009-X. Google Scholar

[24]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels,, Math. Methods Appl. Sci., 11 (1989), 627. doi: 10.1002/mma.1670110505. Google Scholar

[25]

I. W. Stewart, A uniqueness theorem for the coagulation-fragmentation equation,, Math. Proc. Camb. Phil. Soc., 107 (1990), 573. doi: 10.1017/S0305004100068821. Google Scholar

show all references

References:
[1]

M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers,, Comm. Math. Phys., 65 (1979), 203. doi: 10.1007/BF01197880. Google Scholar

[2]

D. J. Aldous, Deterministic and stochastic model for coalescence (aggregation and coagulation): A review of the mean-field theory and probabilists,, Bernoulli, 5 (1999), 3. doi: 10.2307/3318611. Google Scholar

[3]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation,, J. Statist. Phys., 61 (1990), 203. doi: 10.1007/BF01013961. Google Scholar

[4]

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates,, J. Math. Anal. Appl., 391 (2012), 312. doi: 10.1016/j.jmaa.2012.02.002. Google Scholar

[5]

J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case,, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 231. doi: 10.1017/S0308210500027888. Google Scholar

[6]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equation with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892. doi: 10.1006/jmaa.1995.1210. Google Scholar

[7]

P. B. Dubovskiĭ and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation,, Math. Meth. Appl. Sci., 19 (1996), 571. doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q. Google Scholar

[8]

M. Escobedo, Ph. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models,, J. Differential Equations, 195 (2003), 143. doi: 10.1016/S0022-0396(03)00134-7. Google Scholar

[9]

A. K. Giri, "Mathematical and Numerical Analysis for Coagulation-Fragmentation Equations,", Ph.D thesis, (2010). Google Scholar

[10]

A. K. Giri, J. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation,, J. Math. Anal. Appl., 374 (2011), 71. doi: 10.1016/j.jmaa.2010.08.037. Google Scholar

[11]

A. K. Giri and G. Warnecke, Uniqueness for the continuous coagulation-fragmentation equation with strong fragmentation,, Z. Angew. Math. Phys., 62 (2011), 1047. doi: 10.1007/s00033-011-0129-0. Google Scholar

[12]

A. K. Giri, Ph. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation,, Nonlinear Analysis, 75 (2012), 2199. doi: 10.1016/j.na.2011.10.021. Google Scholar

[13]

J. Koch, W. Hackbusch and K. Sundmacher, H-matrix methods for linear and quasi-linear integral operators appearing in population balances,, Comput. Chem. Eng., 31 (2007), 745. Google Scholar

[14]

W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation,, Math. Methods Appl. Sci., 27 (2004), 703. doi: 10.1002/mma.496. Google Scholar

[15]

Ph. Laurençot, On a class of continuous coagulation-fragmentation equations,, J. Differential Equations, 167 (2000), 245. doi: 10.1006/jdeq.2000.3809. Google Scholar

[16]

Ph. Laurençot, The discrete coagulation equation with multiple fragmentation,, Proc. Edinburgh Math. Soc. (2), 45 (2002), 67. doi: 10.1017/S0013091500000316. Google Scholar

[17]

Ph. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219. doi: 10.1017/S0308210500002080. Google Scholar

[18]

Ph. Laurençot and S. Mischler, On coalescence equations and related models,, in, (2004), 321. Google Scholar

[19]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation,, Phys. Rev. Lett., 58 (1987), 892. doi: 10.1103/PhysRevLett.58.892. Google Scholar

[20]

D. J. McLaughlin, W. Lamb and A. C. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation,, SIAM J. Math. Anal., 28 (1997), 1173. doi: 10.1137/S0036141095291713. Google Scholar

[21]

Z. A. Melzak, A scalar transport equation,, Trans. Amer. Math. Soc., 85 (1957), 547. doi: 10.1090/S0002-9947-1957-0087880-6. Google Scholar

[22]

T. W. Peterson, Similarity solutions for the population balance equation describing particle fragmentation,, Aerosol. Sci. Technol., 5 (1986), 93. doi: 10.1080/02786828608959079. Google Scholar

[23]

D. J. Smit, M. J. Hounslow and W. R. Paterson, Aggregation and gelation-I. Analytical solutions for cst and batch operation,, Chem. Eng. Sci., 49 (1994), 1025. doi: 10.1016/0009-2509(94)80009-X. Google Scholar

[24]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels,, Math. Methods Appl. Sci., 11 (1989), 627. doi: 10.1002/mma.1670110505. Google Scholar

[25]

I. W. Stewart, A uniqueness theorem for the coagulation-fragmentation equation,, Math. Proc. Camb. Phil. Soc., 107 (1990), 573. doi: 10.1017/S0305004100068821. Google Scholar

[1]

Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020012

[2]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[3]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[4]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

[5]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks & Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[6]

Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541

[7]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[8]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[9]

Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic & Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040

[10]

Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic & Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043

[11]

Chjan C. Lim, Junping Shi. The role of higher vorticity moments in a variational formulation of Barotropic flows on a rotating sphere. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 717-740. doi: 10.3934/dcdsb.2009.11.717

[12]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 847-863. doi: 10.3934/dcdsb.2013.18.847

[13]

Hongyu Liu, Jun Zou. Uniqueness in determining multiple polygonal scatterers of mixed type. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 375-396. doi: 10.3934/dcdsb.2008.9.375

[14]

Paolo Buttà, Franco Flandoli, Michela Ottobre, Boguslaw Zegarlinski. A non-linear kinetic model of self-propelled particles with multiple equilibria. Kinetic & Related Models, 2019, 12 (4) : 791-827. doi: 10.3934/krm.2019031

[15]

John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84

[16]

Axel Heim, Vladimir Sidorenko, Uli Sorger. Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2008, 2 (4) : 373-391. doi: 10.3934/amc.2008.2.373

[17]

Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014

[18]

Amina Mecherbet. Sedimentation of particles in Stokes flow. Kinetic & Related Models, 2019, 12 (5) : 995-1044. doi: 10.3934/krm.2019038

[19]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[20]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]