June  2013, 6(2): 269-290. doi: 10.3934/krm.2013.6.269

Nonlinear stability of a Vlasov equation for magnetic plasmas

1. 

UPMC-Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu F75252 Paris cedex 05, France, France, France

2. 

INRIA Rocquencourt, BANG project-team, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France

Received  April 2012 Revised  November 2012 Published  February 2013

The mathematical description of laboratory fusion plasmas produced in Tokamaks is still challenging. Complete models for electrons and ions, as Vlasov-Maxwell systems, are computationally too expensive because they take into account all details and scales of magneto-hydrodynamics. In particular, for most of the relevant studies, the mass electron is negligible and the velocity of material waves is much smaller than the speed of light. Therefore it is useful to understand simplified models. Here we propose and study one of those which keeps both the complexity of the Vlasov equation for ions and the Hall effect in Maxwell's equation. Based on energy dissipation, a fundamental physical property, we show that the model is nonlinear stable and consequently prove existence.
Citation: Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269
References:
[1]

M. Acheritogaray, P. Degond, A. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system,, Kinetic and Related Models, 4 (2011), 901. doi: 10.3934/krm.2011.4.901. Google Scholar

[2]

J. Blum, "Numerical Simulation and Optimal Control in Plasma Physics. With Application to Tokamaks",, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, (1989). Google Scholar

[3]

S.-I. Braginskii, Transport processes in a plasma,, in, 1 (1965), 205. Google Scholar

[4]

H. Brezis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité dans les plasmas,, C. R. Acad. Sciences Paris Série I Math., 321 (1995), 953. Google Scholar

[5]

F. Bouchut, F. Golse and M. Pulvirenti, "Kinetic Equations and Asymptotic Theory,", Series in Appl. Math. (Paris), 4 (2000). Google Scholar

[6]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Math. Sciences, 106 (1994). Google Scholar

[7]

F. Chen, "Introduction To Plasma Physics and Controlled Fusion,", Springer, (1984). Google Scholar

[8]

P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas,, Journal of Computational Physics, 205 (2005), 408. doi: 10.1016/j.jcp.2004.11.011. Google Scholar

[9]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Sciences and Technology,", Springer, (1990). Google Scholar

[10]

B. Després and R. Sart, Reduced resistive MHD in Tokamaks with general density,, ESAIM Math. Model. Numer. Anal., 46 (2012), 1081. doi: 10.1051/m2an/2011078. Google Scholar

[11]

L. Desvillettes and S. Mischler, About the splitting algorithm for Boltzmann and B.G.K. equations,, Mathematical Models and Methods in Applied Sciences, 6 (1996), 1079. doi: 10.1142/S0218202596000444. Google Scholar

[12]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729. doi: 10.1002/cpa.3160420603. Google Scholar

[13]

R. J. DiPerna, P.-L. Lions and Y. Meyer, Lp regularity of velocity averages,, Annales de l'Institut Henri Poincaré, 8 (1991), 271. Google Scholar

[14]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[15]

J. Freidberg, "Plasma Physics and Fusion Energy,", Cambridge, (2007). Google Scholar

[16]

J.-F. Gerbeau, C. Le Bris and T. Lelièvre, "Mathematical Methods for the Magnetohydrodynamics of Liquid Metals,", Numerical Mathematics and Scientific Computation, (2006). doi: 10.1093/acprof:oso/9780198566656.001.0001. Google Scholar

[17]

P. Ghendrih, M. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution,, Kinetic and Related Models, 2 (2009), 707. doi: 10.3934/krm.2009.2.707. Google Scholar

[18]

F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation,, J. Funct. Anal., 76 (1988), 110. doi: 10.1016/0022-1236(88)90051-1. Google Scholar

[19]

D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons,, Comm. Partial Differential Equations, 36 (2011), 1385. doi: 10.1080/03605302.2011.555804. Google Scholar

[20]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson System,, Inventiones Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[21]

H. Lütjens and J.-F. Luciani, The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas,, Journal of Computational Physics, 227 (2008), 6944. doi: 10.1016/j.jcp.2008.04.003. Google Scholar

[22]

H. Lütjens and J.-F. Luciani, XTOR-2F: A fully implicit Newton-Krylov solver applied to nonlinear 3D extended MHD in tokamaks,, Journal of Computational Physics, 229 (2010), 8130. doi: 10.1016/j.jcp.2010.07.013. Google Scholar

[23]

C. Mouhot and C. Villani, On Landau damping,, Acta Mathematica, 207 (2011), 29. doi: 10.1007/s11511-011-0068-9. Google Scholar

[24]

B. Perthame, Mathematical tools for kinetic equations,, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 205. doi: 10.1090/S0273-0979-04-01004-3. Google Scholar

[25]

B. Perthame and P.-E. Souganidis, A limiting case for velocity averaging,, Annales Scientifiques de l' École Normale Supérieure, 31 (1998), 591. doi: 10.1016/S0012-9593(98)80108-0. Google Scholar

[26]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, J. Differential Equations, 95 (1992), 281. doi: 10.1016/0022-0396(92)90033-J. Google Scholar

[27]

R. Temam, Remarks on a free boundary value problem arising in plasma physics,, Comm. Partial Differential Equations, 2 (1977), 563. Google Scholar

[28]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", American Mathematical Society, (2000). Google Scholar

[29]

J. Simon, Compact sets in the space $L^p(0, T ; B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

show all references

References:
[1]

M. Acheritogaray, P. Degond, A. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system,, Kinetic and Related Models, 4 (2011), 901. doi: 10.3934/krm.2011.4.901. Google Scholar

[2]

J. Blum, "Numerical Simulation and Optimal Control in Plasma Physics. With Application to Tokamaks",, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, (1989). Google Scholar

[3]

S.-I. Braginskii, Transport processes in a plasma,, in, 1 (1965), 205. Google Scholar

[4]

H. Brezis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité dans les plasmas,, C. R. Acad. Sciences Paris Série I Math., 321 (1995), 953. Google Scholar

[5]

F. Bouchut, F. Golse and M. Pulvirenti, "Kinetic Equations and Asymptotic Theory,", Series in Appl. Math. (Paris), 4 (2000). Google Scholar

[6]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Math. Sciences, 106 (1994). Google Scholar

[7]

F. Chen, "Introduction To Plasma Physics and Controlled Fusion,", Springer, (1984). Google Scholar

[8]

P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas,, Journal of Computational Physics, 205 (2005), 408. doi: 10.1016/j.jcp.2004.11.011. Google Scholar

[9]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Sciences and Technology,", Springer, (1990). Google Scholar

[10]

B. Després and R. Sart, Reduced resistive MHD in Tokamaks with general density,, ESAIM Math. Model. Numer. Anal., 46 (2012), 1081. doi: 10.1051/m2an/2011078. Google Scholar

[11]

L. Desvillettes and S. Mischler, About the splitting algorithm for Boltzmann and B.G.K. equations,, Mathematical Models and Methods in Applied Sciences, 6 (1996), 1079. doi: 10.1142/S0218202596000444. Google Scholar

[12]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729. doi: 10.1002/cpa.3160420603. Google Scholar

[13]

R. J. DiPerna, P.-L. Lions and Y. Meyer, Lp regularity of velocity averages,, Annales de l'Institut Henri Poincaré, 8 (1991), 271. Google Scholar

[14]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[15]

J. Freidberg, "Plasma Physics and Fusion Energy,", Cambridge, (2007). Google Scholar

[16]

J.-F. Gerbeau, C. Le Bris and T. Lelièvre, "Mathematical Methods for the Magnetohydrodynamics of Liquid Metals,", Numerical Mathematics and Scientific Computation, (2006). doi: 10.1093/acprof:oso/9780198566656.001.0001. Google Scholar

[17]

P. Ghendrih, M. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution,, Kinetic and Related Models, 2 (2009), 707. doi: 10.3934/krm.2009.2.707. Google Scholar

[18]

F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation,, J. Funct. Anal., 76 (1988), 110. doi: 10.1016/0022-1236(88)90051-1. Google Scholar

[19]

D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons,, Comm. Partial Differential Equations, 36 (2011), 1385. doi: 10.1080/03605302.2011.555804. Google Scholar

[20]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson System,, Inventiones Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[21]

H. Lütjens and J.-F. Luciani, The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas,, Journal of Computational Physics, 227 (2008), 6944. doi: 10.1016/j.jcp.2008.04.003. Google Scholar

[22]

H. Lütjens and J.-F. Luciani, XTOR-2F: A fully implicit Newton-Krylov solver applied to nonlinear 3D extended MHD in tokamaks,, Journal of Computational Physics, 229 (2010), 8130. doi: 10.1016/j.jcp.2010.07.013. Google Scholar

[23]

C. Mouhot and C. Villani, On Landau damping,, Acta Mathematica, 207 (2011), 29. doi: 10.1007/s11511-011-0068-9. Google Scholar

[24]

B. Perthame, Mathematical tools for kinetic equations,, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 205. doi: 10.1090/S0273-0979-04-01004-3. Google Scholar

[25]

B. Perthame and P.-E. Souganidis, A limiting case for velocity averaging,, Annales Scientifiques de l' École Normale Supérieure, 31 (1998), 591. doi: 10.1016/S0012-9593(98)80108-0. Google Scholar

[26]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, J. Differential Equations, 95 (1992), 281. doi: 10.1016/0022-0396(92)90033-J. Google Scholar

[27]

R. Temam, Remarks on a free boundary value problem arising in plasma physics,, Comm. Partial Differential Equations, 2 (1977), 563. Google Scholar

[28]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", American Mathematical Society, (2000). Google Scholar

[29]

J. Simon, Compact sets in the space $L^p(0, T ; B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[1]

Daniel Han-Kwan. $L^1$ averaging lemma for transport equations with Lipschitz force fields. Kinetic & Related Models, 2010, 3 (4) : 669-683. doi: 10.3934/krm.2010.3.669

[2]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[3]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[4]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[5]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[6]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[7]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[8]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[9]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[10]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[11]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[12]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[13]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[14]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[15]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[16]

S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590

[17]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[18]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[19]

Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661

[20]

Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic & Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

[Back to Top]