September  2012, 5(3): 485-503. doi: 10.3934/krm.2012.5.485

Optimization of a model Fokker-Planck equation

1. 

RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany, Germany, Germany

Received  October 2011 Revised  March 2012 Published  August 2012

We discuss optimal control problems for the Fokker--Planck equation arising in radiotherapy treatment planning. We prove existence and uniqueness of an optimal boundary control for a general tracking--type cost functional in three spatial dimensions. Under additional regularity assumptions we prove existence of a continuous necessary first--order optimality system. In the one--dimensional case we analyse a numerical discretization of the Fokker--Planck equation. We prove that the resulting discrete optimality system is a suitable discretization of the continuous first--order system.
Citation: Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485
References:
[1]

R. Barnard, M. Frank and M. Herty, Optimal radiotherapy treatment planning using minimum entropy models,, preprint, (2011).

[2]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 15 (2005).

[3]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling II),, Math. Mod. Math. Appl. Sci., 16 (2006).

[4]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 17 (2007).

[5]

K. K. Bucci, A. Bevan and M. Roach III, Advances in radiation therapy: Conventional to 3d, to IMRT, to 4d, and beyond},, CA Cancer J. Clin., 55 (2005), 117.

[6]

C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods,, Phys. Med. Biol., 43 (1998), 517. doi: 10.1088/0031-9155/43/3/004.

[7]

C. Börgers, The radiation therapy planning problem,, in, 110 (1999), 1.

[8]

T. Brunner, "Forms of Approximate Radiation Transport,", Sandia Report, (2002).

[9]

R. G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy,, Br. J. Radiol., 58 (1985), 515. doi: 10.1259/0007-1285-58-690-515.

[10]

P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation,, Transport Theory and Statistical Physics, 16 (1987), 589. doi: 10.1080/00411458708204307.

[11]

B. Dubroca and J.-L. Feugeas, Étude théorique et numérique d'une hiérarchie de modèles aux moments pout le transfert radiatif,, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 915.

[12]

R. Duclous, B. Dubroca and M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy,, Physics in Medicine and Biology, 55 (2010). doi: 10.1088/0031-9155/55/13/018.

[13]

M. Frank, Approximate Models for Radiative Transfer,, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 2 (2007), 409.

[14]

M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer,, Journal of Computational Physics, 218 (2006), 1. doi: 10.1016/j.jcp.2006.01.038.

[15]

M. Frank, M. Herty and A. N. Sandjo, Optimal radiotherapy treatment plannig governed by kinetic equations,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 661. doi: 10.1142/S0218202510004386.

[16]

M. Frank, M. Herty and M. Schäfer, Optimal treatment plannig in radiotherapy based on Boltzmann transport calculation,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 573. doi: 10.1142/S0218202508002784.

[17]

K. A. Gifford, J. L. Horton Jr., T. A. Wareing, G. Failla and F. Mourtada, Comparioson of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations,, Phys. Med. Biol., 51 (2006), 2253.

[18]

H. Hensel, R. Iza-Teran and Norbert Siedow, Deterministic model for dose calculation in photon radiotherapy,, Physics in Medicine and Biology, 51 (2006), 675. doi: 10.1088/0031-9155/51/3/013.

[19]

M. Herty and A. N. Sandjo, On Optimal treatment plannig in radiotherapy governed by transport equations,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 345. doi: 10.1142/S0218202511005076.

[20]

M. Herty, R. Pinnau and M. Seaid, Optimal control in radiative transfer,, Optimization Methods and Software, 22 (2007), 917.

[21]

E. W. Larsen, M. M. Miften, B. A. Fraass and I. A. D. Bruinvis, Electron dose calculations using the method of moments,, Med. Phys., 24 (1997), 111. doi: 10.1118/1.597920.

[22]

E. W. Larsen, Tutorial: The nature of transport calculations used in radiation oncology,, Transp. Theory Stat. Phys., 26 (1997).

[23]

J. L. Lions, "Équations Differentielles Operationnelles et Problèmes aux Limites,", Die Grundlehren der mathematischen Wissenschaften, (1961).

[24]

D. Jackson, "Fourier Series and Orthogonal Functions,", Carus Mathematical Monograph Series, (1941).

[25]

K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, T. Bortfeld and C. Thieke, Multicriteria optimizaton in intensity modulated radiotherapy planning,, in, 26 (2009), 123.

[26]

J. C. Mark, "The Spherical Harmonics Method. I. (General Development of the Theory),", Document no. CRT-340 (N.R.C. 1588), (1588).

[27]

J. C. Mark, "The Spherical Harmonics Method. II. (Application to Problems with Plane and Spherical Symmetry,", Document no. CRT-338 (N.R.C. 1589), (1589).

[28]

R. N. Slaybaugh, M. L. Williams, D. Ilas, D. E. Peplow, B. L. Kirk, T. L. Nichols, Y. Y. Azmy and M. P. Langer, Radiation treatment planning using discrete ordinates codes,, Transactions of the American Nuclear Society, 96 (2007), 343.

[29]

D. M. Shepard, M. C. Ferris, G. H. Olivera and T. R. Mackie, Optimizing the delivery of radiation therapy to cancer patients,, SIAM Rev., 41 (1999), 721.

[30]

J. Tervo and P. Kolmonen, Inverse radiotherapy treatment planning model applying Boltzmann-transport equation,, Math. Models. Methods. Appl. Sci., 12 (2002), 109. doi: 10.1142/S021820250200157X.

[31]

G. G. Steel, J. M. Deacon, G. M. Duchesne, A. Horwich, L. R. Kelland and J. H. Peacock, The dose-rate effect in human tumour cells,, Radiotherapy and Oncology, 9 (1987), 299.

[32]

G. G. Steel, J. D. Down, J. H. Peacock and T. C. Stephens, Dose-rate effects and the repair of radiation damage,, Radiotherapy and Oncology, 5 (1986), 321.

[33]

H. Struchtrup, On the number of moments in radiative transfer problems,, Annals of Physics, 266 (1998), 1. doi: 10.1006/aphy.1998.5791.

[34]

J. Tervo, On coupled Boltzmann transport equation related to radiation therapy,, J. Math. Anal. Appl., 335 (2007), 819. doi: 10.1016/j.jmaa.2007.01.092.

[35]

J. Tervo, M. Vauhkonen and E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation,, Linear Algebra and its Applications, 428 (2008), 1230. doi: 10.1016/j.laa.2007.03.003.

[36]

J. Tervo, P. Kolmonen, M. Vauhkonen, L. M. Heikkinen and J. P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem,, Inv. Probl., 15 (1999), 1345. doi: 10.1088/0266-5611/15/5/316.

[37]

F. Tröltzsch, "Optimal Control of Partial Differential Equations. Theory, Methods and Applications,", Graduate Studies in Mathematics, 112 (2010).

show all references

References:
[1]

R. Barnard, M. Frank and M. Herty, Optimal radiotherapy treatment planning using minimum entropy models,, preprint, (2011).

[2]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 15 (2005).

[3]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling II),, Math. Mod. Math. Appl. Sci., 16 (2006).

[4]

N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling),, Math. Mod. Math. Appl. Sci., 17 (2007).

[5]

K. K. Bucci, A. Bevan and M. Roach III, Advances in radiation therapy: Conventional to 3d, to IMRT, to 4d, and beyond},, CA Cancer J. Clin., 55 (2005), 117.

[6]

C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods,, Phys. Med. Biol., 43 (1998), 517. doi: 10.1088/0031-9155/43/3/004.

[7]

C. Börgers, The radiation therapy planning problem,, in, 110 (1999), 1.

[8]

T. Brunner, "Forms of Approximate Radiation Transport,", Sandia Report, (2002).

[9]

R. G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy,, Br. J. Radiol., 58 (1985), 515. doi: 10.1259/0007-1285-58-690-515.

[10]

P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation,, Transport Theory and Statistical Physics, 16 (1987), 589. doi: 10.1080/00411458708204307.

[11]

B. Dubroca and J.-L. Feugeas, Étude théorique et numérique d'une hiérarchie de modèles aux moments pout le transfert radiatif,, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 915.

[12]

R. Duclous, B. Dubroca and M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy,, Physics in Medicine and Biology, 55 (2010). doi: 10.1088/0031-9155/55/13/018.

[13]

M. Frank, Approximate Models for Radiative Transfer,, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 2 (2007), 409.

[14]

M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer,, Journal of Computational Physics, 218 (2006), 1. doi: 10.1016/j.jcp.2006.01.038.

[15]

M. Frank, M. Herty and A. N. Sandjo, Optimal radiotherapy treatment plannig governed by kinetic equations,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 661. doi: 10.1142/S0218202510004386.

[16]

M. Frank, M. Herty and M. Schäfer, Optimal treatment plannig in radiotherapy based on Boltzmann transport calculation,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 573. doi: 10.1142/S0218202508002784.

[17]

K. A. Gifford, J. L. Horton Jr., T. A. Wareing, G. Failla and F. Mourtada, Comparioson of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations,, Phys. Med. Biol., 51 (2006), 2253.

[18]

H. Hensel, R. Iza-Teran and Norbert Siedow, Deterministic model for dose calculation in photon radiotherapy,, Physics in Medicine and Biology, 51 (2006), 675. doi: 10.1088/0031-9155/51/3/013.

[19]

M. Herty and A. N. Sandjo, On Optimal treatment plannig in radiotherapy governed by transport equations,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 345. doi: 10.1142/S0218202511005076.

[20]

M. Herty, R. Pinnau and M. Seaid, Optimal control in radiative transfer,, Optimization Methods and Software, 22 (2007), 917.

[21]

E. W. Larsen, M. M. Miften, B. A. Fraass and I. A. D. Bruinvis, Electron dose calculations using the method of moments,, Med. Phys., 24 (1997), 111. doi: 10.1118/1.597920.

[22]

E. W. Larsen, Tutorial: The nature of transport calculations used in radiation oncology,, Transp. Theory Stat. Phys., 26 (1997).

[23]

J. L. Lions, "Équations Differentielles Operationnelles et Problèmes aux Limites,", Die Grundlehren der mathematischen Wissenschaften, (1961).

[24]

D. Jackson, "Fourier Series and Orthogonal Functions,", Carus Mathematical Monograph Series, (1941).

[25]

K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, T. Bortfeld and C. Thieke, Multicriteria optimizaton in intensity modulated radiotherapy planning,, in, 26 (2009), 123.

[26]

J. C. Mark, "The Spherical Harmonics Method. I. (General Development of the Theory),", Document no. CRT-340 (N.R.C. 1588), (1588).

[27]

J. C. Mark, "The Spherical Harmonics Method. II. (Application to Problems with Plane and Spherical Symmetry,", Document no. CRT-338 (N.R.C. 1589), (1589).

[28]

R. N. Slaybaugh, M. L. Williams, D. Ilas, D. E. Peplow, B. L. Kirk, T. L. Nichols, Y. Y. Azmy and M. P. Langer, Radiation treatment planning using discrete ordinates codes,, Transactions of the American Nuclear Society, 96 (2007), 343.

[29]

D. M. Shepard, M. C. Ferris, G. H. Olivera and T. R. Mackie, Optimizing the delivery of radiation therapy to cancer patients,, SIAM Rev., 41 (1999), 721.

[30]

J. Tervo and P. Kolmonen, Inverse radiotherapy treatment planning model applying Boltzmann-transport equation,, Math. Models. Methods. Appl. Sci., 12 (2002), 109. doi: 10.1142/S021820250200157X.

[31]

G. G. Steel, J. M. Deacon, G. M. Duchesne, A. Horwich, L. R. Kelland and J. H. Peacock, The dose-rate effect in human tumour cells,, Radiotherapy and Oncology, 9 (1987), 299.

[32]

G. G. Steel, J. D. Down, J. H. Peacock and T. C. Stephens, Dose-rate effects and the repair of radiation damage,, Radiotherapy and Oncology, 5 (1986), 321.

[33]

H. Struchtrup, On the number of moments in radiative transfer problems,, Annals of Physics, 266 (1998), 1. doi: 10.1006/aphy.1998.5791.

[34]

J. Tervo, On coupled Boltzmann transport equation related to radiation therapy,, J. Math. Anal. Appl., 335 (2007), 819. doi: 10.1016/j.jmaa.2007.01.092.

[35]

J. Tervo, M. Vauhkonen and E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation,, Linear Algebra and its Applications, 428 (2008), 1230. doi: 10.1016/j.laa.2007.03.003.

[36]

J. Tervo, P. Kolmonen, M. Vauhkonen, L. M. Heikkinen and J. P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem,, Inv. Probl., 15 (1999), 1345. doi: 10.1088/0266-5611/15/5/316.

[37]

F. Tröltzsch, "Optimal Control of Partial Differential Equations. Theory, Methods and Applications,", Graduate Studies in Mathematics, 112 (2010).

[1]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[2]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[6]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[7]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[8]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[9]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[10]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[11]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[12]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[13]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[14]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[15]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[16]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[17]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[18]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Multiple solutions for a class of $(p_1, \ldots, p_n)$-biharmonic systems. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1393-1406. doi: 10.3934/cpaa.2013.12.1393

[19]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[20]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

[Back to Top]