September  2012, 5(3): 441-458. doi: 10.3934/krm.2012.5.441

A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem

1. 

Department of Mathematics, College of Natural Sciences, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, South Korea

Received  November 2011 Revised  February 2012 Published  August 2012

We present a Fourier transform formula of quadratic-form type for the collision operator with a Maxwellian kernel under the momentum transfer condition. As an application, we extend the work of Toscani and Villani on the uniform stability of the Cauchy problem for the associated Boltzmann equation to any physically relevant Maxwellian molecules in the long-range interactions with a minimal requirement for the initial data.
Citation: Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441
References:
[1]

R. Alexandre and M. El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I. Non-cutoff case and Maxwellian molecules,, Math. Models Methods Appl. Sci., 15 (2005), 907. doi: 10.1142/S0218202505000613. Google Scholar

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interations,, Arch. Ration. Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[3]

A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules,, Dokl. Akad. Nauk SSSR, 225 (1975), 1041. Google Scholar

[4]

J. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations,, Riv. Mat. Univ. Parma (7), 6 (2007), 75. Google Scholar

[5]

L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation,, Summer School on Methods and Models in Kinetic Theory, 2 (2003), 1. Google Scholar

[6]

L. Desvillettes and M. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions,, Arch. Rational Mech. Anal., 193 (2009), 227. doi: 10.1007/s00205-009-0233-x. Google Scholar

[7]

N. Fournier and G. Héléne, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity,, J. Stat. Phys., 131 (2008), 749. doi: 10.1007/s10955-008-9511-5. Google Scholar

[8]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grasing collisions,, J. Stat. Phys., 89 (1997), 752. doi: 10.1007/BF02765543. Google Scholar

[9]

A. Pulvirenti and G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation,, Ann. Mat. Pura Appl. (IV), 171 (1996), 181. doi: 10.1007/BF01759387. Google Scholar

[10]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Stat. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756. Google Scholar

[11]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of Mathematical Fluid Dynamics, Vol. I (): 71. Google Scholar

[12]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106. Google Scholar

show all references

References:
[1]

R. Alexandre and M. El Safadi, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I. Non-cutoff case and Maxwellian molecules,, Math. Models Methods Appl. Sci., 15 (2005), 907. doi: 10.1142/S0218202505000613. Google Scholar

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interations,, Arch. Ration. Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[3]

A. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules,, Dokl. Akad. Nauk SSSR, 225 (1975), 1041. Google Scholar

[4]

J. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations,, Riv. Mat. Univ. Parma (7), 6 (2007), 75. Google Scholar

[5]

L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation,, Summer School on Methods and Models in Kinetic Theory, 2 (2003), 1. Google Scholar

[6]

L. Desvillettes and M. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions,, Arch. Rational Mech. Anal., 193 (2009), 227. doi: 10.1007/s00205-009-0233-x. Google Scholar

[7]

N. Fournier and G. Héléne, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity,, J. Stat. Phys., 131 (2008), 749. doi: 10.1007/s10955-008-9511-5. Google Scholar

[8]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grasing collisions,, J. Stat. Phys., 89 (1997), 752. doi: 10.1007/BF02765543. Google Scholar

[9]

A. Pulvirenti and G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation,, Ann. Mat. Pura Appl. (IV), 171 (1996), 181. doi: 10.1007/BF01759387. Google Scholar

[10]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Stat. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756. Google Scholar

[11]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of Mathematical Fluid Dynamics, Vol. I (): 71. Google Scholar

[12]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106. Google Scholar

[1]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic & Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[2]

Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435-458. doi: 10.3934/cpaa.2011.10.435

[3]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic & Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[4]

Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023

[5]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic & Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[6]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[7]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[8]

Yong-Kum Cho. On the homogeneous Boltzmann equation with soft-potential collision kernels. Kinetic & Related Models, 2015, 8 (2) : 309-333. doi: 10.3934/krm.2015.8.309

[9]

Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic & Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769

[10]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[11]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[12]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[13]

Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048

[14]

Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277

[15]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[16]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[17]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[18]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic & Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[19]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[20]

Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems & Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]