June  2012, 5(2): 357-382. doi: 10.3934/krm.2012.5.357

Periodic long-time behaviour for an approximate model of nematic polymers

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084

2. 

CERMICS, École des Ponts ParisTech, 6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France, France

Received  July 2011 Revised  January 2012 Published  April 2012

We study the long-time behaviour of a nonlinear Fokker-Planck equation, which models the evolution of rigid polymers in a given flow, after a closure approximation. The aim of this work is twofold: first, we propose a microscopic derivation of the classical Doi closure, at the level of the kinetic equation ; second, under specific assumptions on the parameters and the initial condition, we prove convergence of the solution to the Fokker-Planck equation to a particular periodic solution in the long-time limit.
Citation: Lingbing He, Claude Le Bris, Tony Lelièvre. Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic & Related Models, 2012, 5 (2) : 357-382. doi: 10.3934/krm.2012.5.357
References:
[1]

C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, "Sur les Inégalités de Sobolev Logarithmiques,", Panoramas et Synthèses, 10 (2000). Google Scholar

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations,, Comm. Part. Diff. Eq., 26 (2001), 43. Google Scholar

[3]

J.-P. Bartier, J. Dolbeault, R. Illner and M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients,, Math. Models and Methods in Applied Sciences, 17 (2007), 327. doi: 10.1142/S0218202507001942. Google Scholar

[4]

G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation,, Commun. Pur. Appl. Math., 61 (2008), 371. doi: 10.1002/cpa.20210. Google Scholar

[5]

P. Constantin, I. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation,, Archive Rational Mech. Analysis, 174 (2004), 365. doi: 10.1007/s00205-004-0331-8. Google Scholar

[6]

P. Constantin, I. Kevrekidis and E. S. Titi, Remarks on a Smoluchowski equation,, Disc. and Cont. Dyn. Syst., 11 (2004), 101. doi: 10.3934/dcds.2004.11.101. Google Scholar

[7]

M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases,, J. Polym. Sci., 19 (1981), 229. doi: 10.1002/pol.1981.180190205. Google Scholar

[8]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, The flashing ratchet: Long time behavior and dynamical systems interpretation,, Technical Report 0244, (0244), 2002. Google Scholar

[9]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,", Fifth edition, (1979). Google Scholar

[10]

M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions,, J. Multivariate Anal., 19 (1986), 311. doi: 10.1016/0047-259X(86)90035-7. Google Scholar

[11]

B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows,, Archive for Rational Mechanics and Analysis, 181 (2006), 97. doi: 10.1007/s00205-005-0411-4. Google Scholar

[12]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", Second edition, 112 (1998). Google Scholar

[13]

C. Le Bris, T. Lelièvre and E. Vanden-Eijnden, Analysis of some discretization schemes for constrained stochastic differential equations,, C. R. Math. Acad. Sci. Paris, 346 (2008), 471. doi: 10.1016/j.crma.2008.02.016. Google Scholar

[14]

J. H. Lee, M. G. Forest and R. Zhou, Alignment and Rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 339. Google Scholar

[15]

J. D. Meiss, "Differential Dynamical Systems,", Mathematical Modeling and Computation, 14 (2007). Google Scholar

[16]

I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers,", Fifth edition, (1991). Google Scholar

[17]

A.-S. Sznitman, Topics in propagation of chaos,, in, 1464 (1991), 165. Google Scholar

[18]

H. Zhang and P.-W. Zhang, A theoretical and numerical study for the rod-like model of a polymeric fluid,, Journal of Computational Mathematics, 22 (2004), 319. Google Scholar

show all references

References:
[1]

C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, "Sur les Inégalités de Sobolev Logarithmiques,", Panoramas et Synthèses, 10 (2000). Google Scholar

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations,, Comm. Part. Diff. Eq., 26 (2001), 43. Google Scholar

[3]

J.-P. Bartier, J. Dolbeault, R. Illner and M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients,, Math. Models and Methods in Applied Sciences, 17 (2007), 327. doi: 10.1142/S0218202507001942. Google Scholar

[4]

G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation,, Commun. Pur. Appl. Math., 61 (2008), 371. doi: 10.1002/cpa.20210. Google Scholar

[5]

P. Constantin, I. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation,, Archive Rational Mech. Analysis, 174 (2004), 365. doi: 10.1007/s00205-004-0331-8. Google Scholar

[6]

P. Constantin, I. Kevrekidis and E. S. Titi, Remarks on a Smoluchowski equation,, Disc. and Cont. Dyn. Syst., 11 (2004), 101. doi: 10.3934/dcds.2004.11.101. Google Scholar

[7]

M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases,, J. Polym. Sci., 19 (1981), 229. doi: 10.1002/pol.1981.180190205. Google Scholar

[8]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, The flashing ratchet: Long time behavior and dynamical systems interpretation,, Technical Report 0244, (0244), 2002. Google Scholar

[9]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,", Fifth edition, (1979). Google Scholar

[10]

M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions,, J. Multivariate Anal., 19 (1986), 311. doi: 10.1016/0047-259X(86)90035-7. Google Scholar

[11]

B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows,, Archive for Rational Mechanics and Analysis, 181 (2006), 97. doi: 10.1007/s00205-005-0411-4. Google Scholar

[12]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", Second edition, 112 (1998). Google Scholar

[13]

C. Le Bris, T. Lelièvre and E. Vanden-Eijnden, Analysis of some discretization schemes for constrained stochastic differential equations,, C. R. Math. Acad. Sci. Paris, 346 (2008), 471. doi: 10.1016/j.crma.2008.02.016. Google Scholar

[14]

J. H. Lee, M. G. Forest and R. Zhou, Alignment and Rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 339. Google Scholar

[15]

J. D. Meiss, "Differential Dynamical Systems,", Mathematical Modeling and Computation, 14 (2007). Google Scholar

[16]

I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers,", Fifth edition, (1991). Google Scholar

[17]

A.-S. Sznitman, Topics in propagation of chaos,, in, 1464 (1991), 165. Google Scholar

[18]

H. Zhang and P.-W. Zhang, A theoretical and numerical study for the rod-like model of a polymeric fluid,, Journal of Computational Mathematics, 22 (2004), 319. Google Scholar

[1]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[2]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[3]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[4]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[5]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[6]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[7]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[8]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[9]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[10]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[11]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations & Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[12]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[13]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[14]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[15]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[16]

Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic & Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557

[17]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[18]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[19]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[20]

Joo Hee Lee, M. Gregory Forest, Ruhai Zhou. Alignment and rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 339-356. doi: 10.3934/dcdsb.2006.6.339

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]