March  2012, 5(1): 21-50. doi: 10.3934/krm.2012.5.21

Ghost effect for a vapor-vapor mixture

1. 

Institut Polytechnique de Bordeaux, 351, cours de la Libération, 33405 TALENCE Cedex, France

Received  June 2011 Revised  September 2011 Published  January 2012

This paper studies the non linear Boltzmann equation for a two component gas at the small Knudsen number regime. The solution is found from a truncated Hilbert expansion. The first order of the fluid equations shows the ghost effect. The fluid system is solved when the boundary conditions are close enough to each other. Next the boundary conditions for the kinetic system are satisfied by adding for the first and the second order terms of the expansion Knudsen terms. The construction of such boundary layers requires the study of a Milne problem for mixtures. In a last part the rest term of the expansion is rigorously controled by using a new decomposition into a low and a high velocity part.
Citation: Stéphane Brull. Ghost effect for a vapor-vapor mixture. Kinetic & Related Models, 2012, 5 (1) : 21-50. doi: 10.3934/krm.2012.5.21
References:
[1]

K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation,, in, (2001), 565. Google Scholar

[2]

K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture,, Journ. Stat. Phys., 112 (2003), 629. doi: 10.1023/A:1023876025363. Google Scholar

[3]

K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas,, Physics of Fluids, 10 (1998), 1519. doi: 10.1063/1.869671. Google Scholar

[4]

K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas,, European Journal of Mechanics B Fluids, 22 (2003), 51. doi: 10.1016/S0997-7546(02)00008-0. Google Scholar

[5]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem,, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51. Google Scholar

[6]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Ration. Mech. Anal., 198 (2010), 125. doi: 10.1007/s00205-010-0292-z. Google Scholar

[7]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow,, to appear in Kinetic and Related Models., (). Google Scholar

[8]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits,, Journ. Stat. Phys., 118 (2005), 849. doi: 10.1007/s10955-004-2708-3. Google Scholar

[9]

L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation,, Journ. Stat. Phys., 124 (2006), 401. doi: 10.1007/s10955-005-8008-8. Google Scholar

[10]

C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas,, Commun. Pure and Applied Math., 39 (1986), 323. Google Scholar

[11]

S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes,", Ph.D thesis, (2006). Google Scholar

[12]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab,, Math. Meth. Appl. Sci., 31 (2008), 153. doi: 10.1002/mma.897. Google Scholar

[13]

S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab,, Math. Meth. Appl. Sci., 31 (2008), 1653. doi: 10.1002/mma.991. Google Scholar

[14]

S. Brull, Problem of evaporation-condensation for a two component gas in the slab,, Kinetic and Related Models, 1 (2008), 185. doi: 10.3934/krm.2008.1.185. Google Scholar

[15]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses,, Adv. in Diff. Eq., 15 (2010), 1103. Google Scholar

[16]

R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,, Commun. Pure and Applied Math., 33 (1980), 651. doi: 10.1002/cpa.3160330506. Google Scholar

[17]

C. Cercignani, "The Boltzman Equation and its Applications,", Applied Mathematical Sciences, 67 (1988). Google Scholar

[18]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994). Google Scholar

[19]

L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog,, preprint, (1994). Google Scholar

[20]

R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab,, Comm. Math. Phys., 160 (1994), 49. doi: 10.1007/BF02099789. Google Scholar

[21]

R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation,, Journ. Stat. Phys., 78 (1995), 389. doi: 10.1007/BF02183355. Google Scholar

[22]

H. Grad, Asymptotic theory of the Boltzmann equation,, Physics of Fluids, 6 (1963), 147. doi: 10.1063/1.1706716. Google Scholar

[23]

H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, (1962), 26. Google Scholar

[24]

H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,, in, (1965), 154. Google Scholar

[25]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulations in Science, (2002). doi: 10.1007/978-1-4612-0061-1. Google Scholar

[26]

Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation,, Physics of Fluids, 8 (1996), 628. doi: 10.1063/1.869133. Google Scholar

[27]

Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit,, Phys. Fluids, 16 (2004), 952. doi: 10.1063/1.1649738. Google Scholar

[28]

S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation,, Physics of Fluids, 16 (2004). doi: 10.1063/1.1630324. Google Scholar

[29]

S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit,, Physics of Fluids, 16 (2004). doi: 10.1063/1.1723464. Google Scholar

[30]

S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory,, Physics of Fluids, 11 (1999), 2743. doi: 10.1063/1.870133. Google Scholar

[31]

S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation,, in, 30 (2001), 205. Google Scholar

[32]

R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio,, Physics of Fluids, 30 (1987). doi: 10.1063/1.866142. Google Scholar

show all references

References:
[1]

K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation,, in, (2001), 565. Google Scholar

[2]

K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture,, Journ. Stat. Phys., 112 (2003), 629. doi: 10.1023/A:1023876025363. Google Scholar

[3]

K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas,, Physics of Fluids, 10 (1998), 1519. doi: 10.1063/1.869671. Google Scholar

[4]

K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas,, European Journal of Mechanics B Fluids, 22 (2003), 51. doi: 10.1016/S0997-7546(02)00008-0. Google Scholar

[5]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem,, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51. Google Scholar

[6]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Ration. Mech. Anal., 198 (2010), 125. doi: 10.1007/s00205-010-0292-z. Google Scholar

[7]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow,, to appear in Kinetic and Related Models., (). Google Scholar

[8]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits,, Journ. Stat. Phys., 118 (2005), 849. doi: 10.1007/s10955-004-2708-3. Google Scholar

[9]

L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation,, Journ. Stat. Phys., 124 (2006), 401. doi: 10.1007/s10955-005-8008-8. Google Scholar

[10]

C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas,, Commun. Pure and Applied Math., 39 (1986), 323. Google Scholar

[11]

S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes,", Ph.D thesis, (2006). Google Scholar

[12]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab,, Math. Meth. Appl. Sci., 31 (2008), 153. doi: 10.1002/mma.897. Google Scholar

[13]

S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab,, Math. Meth. Appl. Sci., 31 (2008), 1653. doi: 10.1002/mma.991. Google Scholar

[14]

S. Brull, Problem of evaporation-condensation for a two component gas in the slab,, Kinetic and Related Models, 1 (2008), 185. doi: 10.3934/krm.2008.1.185. Google Scholar

[15]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses,, Adv. in Diff. Eq., 15 (2010), 1103. Google Scholar

[16]

R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,, Commun. Pure and Applied Math., 33 (1980), 651. doi: 10.1002/cpa.3160330506. Google Scholar

[17]

C. Cercignani, "The Boltzman Equation and its Applications,", Applied Mathematical Sciences, 67 (1988). Google Scholar

[18]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994). Google Scholar

[19]

L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog,, preprint, (1994). Google Scholar

[20]

R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab,, Comm. Math. Phys., 160 (1994), 49. doi: 10.1007/BF02099789. Google Scholar

[21]

R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation,, Journ. Stat. Phys., 78 (1995), 389. doi: 10.1007/BF02183355. Google Scholar

[22]

H. Grad, Asymptotic theory of the Boltzmann equation,, Physics of Fluids, 6 (1963), 147. doi: 10.1063/1.1706716. Google Scholar

[23]

H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, (1962), 26. Google Scholar

[24]

H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,, in, (1965), 154. Google Scholar

[25]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulations in Science, (2002). doi: 10.1007/978-1-4612-0061-1. Google Scholar

[26]

Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation,, Physics of Fluids, 8 (1996), 628. doi: 10.1063/1.869133. Google Scholar

[27]

Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit,, Phys. Fluids, 16 (2004), 952. doi: 10.1063/1.1649738. Google Scholar

[28]

S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation,, Physics of Fluids, 16 (2004). doi: 10.1063/1.1630324. Google Scholar

[29]

S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit,, Physics of Fluids, 16 (2004). doi: 10.1063/1.1723464. Google Scholar

[30]

S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory,, Physics of Fluids, 11 (1999), 2743. doi: 10.1063/1.870133. Google Scholar

[31]

S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation,, in, 30 (2001), 205. Google Scholar

[32]

R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio,, Physics of Fluids, 30 (1987). doi: 10.1063/1.866142. Google Scholar

[1]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[2]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[3]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic & Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[4]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[5]

Bilal Al Taki. Global well posedness for the ghost effect system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 345-368. doi: 10.3934/cpaa.2017017

[6]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

[7]

Léo Glangetas, Mohamed Najeme. Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 407-427. doi: 10.3934/krm.2013.6.407

[8]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[9]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Erratum to: Ghost effect by curvature in planar Couette flow [1]. Kinetic & Related Models, 2012, 5 (3) : 669-672. doi: 10.3934/krm.2012.5.669

[10]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[11]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[12]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[13]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[14]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[15]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[16]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[17]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[18]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[19]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[20]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]