March  2012, 5(1): 185-201. doi: 10.3934/krm.2012.5.185

H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory

1. 

Center for Computational Engineering Science, RWTH Aachen University, Schinkelstr.2, 52062 Aachen, Germany

Received  May 2011 Revised  July 2011 Published  January 2012

The regularized 13-moment equations (R13) are a successful macroscopic model to describe non-equilibrium gas flows in rarefied or micro situations. Even though the equations have been derived for the nonlinear case and many examples demonstrate the usefulness of the equations, sofar, the important property of an accompanying entropy law could only be shown for the linearized equations [Struchtrup&Torrilhon, Phys. Rev. Lett. 99, (2007), 014502]. Based on an approach suggested by Öttinger [Phys. Rev. Lett. 104, (2010), 120601], this paper presents a nonlinear entropy law for the R13 system. In the derivation the variables and equations of the R13 system are nonlinearily extended such that an entropy law with non-negative production can be formulated. It is then demonstrated that the original R13 system is included in the new equations.
Citation: Manuel Torrilhon. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinetic & Related Models, 2012, 5 (1) : 185-201. doi: 10.3934/krm.2012.5.185
References:
[1]

K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686. doi: 10.1073/pnas.68.8.1686. Google Scholar

[2]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331. Google Scholar

[3]

S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics,", North Holland, (1962). Google Scholar

[4]

X.-J. Gu and D. Emerson, A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions,, J. Comput. Phys., 225 (2007), 263. doi: 10.1016/j.jcp.2006.11.032. Google Scholar

[5]

G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases,", Springer, (2010). doi: 10.1007/978-3-642-11696-4. Google Scholar

[6]

C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics,, SIAM J. Appl. Math., 59 (1999), 72. Google Scholar

[7]

I. Müller and T. Ruggeri, "Rational Extended Thermodynamics," Second edition, With supplementary chapters by H. Struchtrup and Wolf Weiss, Springer Tracts in Natural Philosophy, 37,, Springer-Verlag, (1998). Google Scholar

[8]

H. C. Öttinger, "Beyond Equilibrium Thermodynamics,", Wiley, (2005). Google Scholar

[9]

H. C. Öttinger, Reply to the comment on 'Thermodynamically admissible 13 moment equations from the Boltzmann equation',, Phys. Rev. Lett., 105 (2010). Google Scholar

[10]

H. C. Öttinger, Thermodynamically admissible 13 moment equations from the Boltzmann equation,, Phys. Rev. Lett., 104 (2010). doi: 10.1103/PhysRevLett.104.120601. Google Scholar

[11]

H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials,, Multiscale Model. Simul., 3 (): 221. doi: 10.1137/040603115. Google Scholar

[12]

H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory,", Interaction of Mechanics and Mathematics, (2005). Google Scholar

[13]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13-moment-equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668. doi: 10.1063/1.1597472. Google Scholar

[14]

H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations,, Phys. Rev. Letters, 99 (2007). doi: 10.1103/PhysRevLett.99.014502. Google Scholar

[15]

H. Struchtrup and M. Torrilhon, Comment on 'Thermodynamically admissible 13 moment equations from the Boltzmann equation',, Phys. Rev. Letters, 105 (2010). doi: 10.1103/PhysRevLett.105.128901. Google Scholar

[16]

P. Taheri, A. S. Rana, M. Torrilhon and H. Struchtrup, Macroscopic presentation of steady and unsteady rarefaction effects in the fundamental boundary value problems of gas dynamics,, Continuum Mech. Thermodyn., 21 (2009), 423. doi: 10.1007/s00161-009-0115-3. Google Scholar

[17]

P. Taheri, M. Torrilhon and H. Struchtrup, Couette and poiseuille microflows: Analytical solutions for regularized 13-moment equations,, Phys. Fluids, 21 (2009). doi: 10.1063/1.3064123. Google Scholar

[18]

M. Torrilhon, Two-dimensional bulk microflow simulations based on regularized Grad's 13-moment-equations,, Multiscale Model. Simul., 5 (2006), 695. doi: 10.1137/050635444. Google Scholar

[19]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions,, Comm. Comput. Phys., 7 (2010), 639. Google Scholar

[20]

M. Torrilhon, Slow rarefied flow past a sphere: Analytical solutions based on moment equations,, Phys. Fluids, 22 (2010). doi: 10.1063/1.3453707. Google Scholar

[21]

M. Torrilhon and H. Struchtrup, Regularized 13-moment-equations: Shock structure calculations and comparison to Burnett models,, J. Fluid Mech., 513 (2004), 171. doi: 10.1017/S0022112004009917. Google Scholar

[22]

M. Torrilhon and H. Struchtrup, Boundary conditions for regularized 13-moment-equations for micro-channel-flows,, J. Comput. Phys., 227 (2008), 1982. doi: 10.1016/j.jcp.2007.10.006. Google Scholar

show all references

References:
[1]

K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686. doi: 10.1073/pnas.68.8.1686. Google Scholar

[2]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331. Google Scholar

[3]

S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics,", North Holland, (1962). Google Scholar

[4]

X.-J. Gu and D. Emerson, A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions,, J. Comput. Phys., 225 (2007), 263. doi: 10.1016/j.jcp.2006.11.032. Google Scholar

[5]

G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases,", Springer, (2010). doi: 10.1007/978-3-642-11696-4. Google Scholar

[6]

C. D. Levermore and W. J. Morokoff, The Gaussian moment closure for gas dynamics,, SIAM J. Appl. Math., 59 (1999), 72. Google Scholar

[7]

I. Müller and T. Ruggeri, "Rational Extended Thermodynamics," Second edition, With supplementary chapters by H. Struchtrup and Wolf Weiss, Springer Tracts in Natural Philosophy, 37,, Springer-Verlag, (1998). Google Scholar

[8]

H. C. Öttinger, "Beyond Equilibrium Thermodynamics,", Wiley, (2005). Google Scholar

[9]

H. C. Öttinger, Reply to the comment on 'Thermodynamically admissible 13 moment equations from the Boltzmann equation',, Phys. Rev. Lett., 105 (2010). Google Scholar

[10]

H. C. Öttinger, Thermodynamically admissible 13 moment equations from the Boltzmann equation,, Phys. Rev. Lett., 104 (2010). doi: 10.1103/PhysRevLett.104.120601. Google Scholar

[11]

H. Struchtrup, Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials,, Multiscale Model. Simul., 3 (): 221. doi: 10.1137/040603115. Google Scholar

[12]

H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory,", Interaction of Mechanics and Mathematics, (2005). Google Scholar

[13]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13-moment-equations: Derivation and linear analysis,, Phys. Fluids, 15 (2003), 2668. doi: 10.1063/1.1597472. Google Scholar

[14]

H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations,, Phys. Rev. Letters, 99 (2007). doi: 10.1103/PhysRevLett.99.014502. Google Scholar

[15]

H. Struchtrup and M. Torrilhon, Comment on 'Thermodynamically admissible 13 moment equations from the Boltzmann equation',, Phys. Rev. Letters, 105 (2010). doi: 10.1103/PhysRevLett.105.128901. Google Scholar

[16]

P. Taheri, A. S. Rana, M. Torrilhon and H. Struchtrup, Macroscopic presentation of steady and unsteady rarefaction effects in the fundamental boundary value problems of gas dynamics,, Continuum Mech. Thermodyn., 21 (2009), 423. doi: 10.1007/s00161-009-0115-3. Google Scholar

[17]

P. Taheri, M. Torrilhon and H. Struchtrup, Couette and poiseuille microflows: Analytical solutions for regularized 13-moment equations,, Phys. Fluids, 21 (2009). doi: 10.1063/1.3064123. Google Scholar

[18]

M. Torrilhon, Two-dimensional bulk microflow simulations based on regularized Grad's 13-moment-equations,, Multiscale Model. Simul., 5 (2006), 695. doi: 10.1137/050635444. Google Scholar

[19]

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson-IV-distributions,, Comm. Comput. Phys., 7 (2010), 639. Google Scholar

[20]

M. Torrilhon, Slow rarefied flow past a sphere: Analytical solutions based on moment equations,, Phys. Fluids, 22 (2010). doi: 10.1063/1.3453707. Google Scholar

[21]

M. Torrilhon and H. Struchtrup, Regularized 13-moment-equations: Shock structure calculations and comparison to Burnett models,, J. Fluid Mech., 513 (2004), 171. doi: 10.1017/S0022112004009917. Google Scholar

[22]

M. Torrilhon and H. Struchtrup, Boundary conditions for regularized 13-moment-equations for micro-channel-flows,, J. Comput. Phys., 227 (2008), 1982. doi: 10.1016/j.jcp.2007.10.006. Google Scholar

[1]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[2]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[3]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[4]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[5]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019032

[6]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[7]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[8]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic & Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[9]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[10]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[11]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[12]

Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic & Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030

[13]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[14]

Martial Agueh, Guillaume Carlier, Reinhard Illner. Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds. Kinetic & Related Models, 2015, 8 (2) : 201-214. doi: 10.3934/krm.2015.8.201

[15]

Zbigniew Banach, Wieslaw Larecki. Entropy-based mixed three-moment description of fermionic radiation transport in slab and spherical geometries. Kinetic & Related Models, 2017, 10 (4) : 879-900. doi: 10.3934/krm.2017035

[16]

Thibaut Allemand. Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kinetic & Related Models, 2009, 2 (2) : 379-402. doi: 10.3934/krm.2009.2.379

[17]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[18]

José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic & Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

[19]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[20]

Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]