March  2012, 5(1): 129-153. doi: 10.3934/krm.2012.5.129

Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior

1. 

Department of Mathematics Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States

Received  August 2011 Revised  August 2011 Published  January 2012

A collisionless plasma is modeled by the Vlasov-Poisson system in three space dimensions. A fixed background of positive charge, which is independent of time and space, is assumed. The situation in which mobile negative ions balance the positive charge as $|x|\to\infty$ is considered. Hence, the total positive charge and the total negative charge are both infinite. It is shown, in three spatial dimensions, that smooth solutions may be continued as long as the velocity support remains finite. Also, in the case of spherical symmetry, a bound on velocity support is obtained and hence solutions exist globally in time.
Citation: Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129
References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics,, J. Diff. Eqns., 25 (1977), 342. doi: 10.1016/0022-0396(77)90049-3. Google Scholar

[2]

J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions,, C. R. Academy of Sci. Paris Sér. I Math., 313 (1991), 411. Google Scholar

[3]

E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rational Mech. Anal., 159 (2001), 85. doi: 10.1007/s002050100150. Google Scholar

[4]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Commun. PDE, 27 (2002), 791. doi: 10.1081/PDE-120002874. Google Scholar

[5]

R. Glassey, "The Cauchy Problem in Kinetic Theory,'', SIAM, (1996). doi: 10.1137/1.9781611971477. Google Scholar

[6]

R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation,, Trans. Th. Stat. Phys., 23 (1994), 411. doi: 10.1080/00411459408203873. Google Scholar

[7]

R. Glassey and J. Schaeffer, On time decay rates in Landau damping,, Commun. PDE, 20 (1995), 647. doi: 10.1080/03605309508821107. Google Scholar

[8]

R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities,, Arch. Rat. Mech. Anal., 92 (1986), 59. doi: 10.1007/BF00250732. Google Scholar

[9]

E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system,, Math. Meth. Appl. Sci., 16 (1993), 75. doi: 10.1002/mma.1670160202. Google Scholar

[10]

E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov-Equation, Parts I and II,, Math. Meth. Appl. Sci., 3 (1981), 229. Google Scholar

[11]

P.-E. Jabin, The Vlasov-Poisson system with infinite mass and energy,, J. Statist. Phys., 103 (2001), 1107. doi: 10.1023/A:1010321308267. Google Scholar

[12]

R. Kurth, Das Anfangswertproblem der stellardynamik,, Z. Astrophys., 30 (1952), 213. Google Scholar

[13]

L. D. Landau, On the vibrations of the electronic plasma,, Akad. Nauk SSSR. Shurnal Eksper. Fiz., 16 (1946), 574. Google Scholar

[14]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[15]

T. Okabe and S. Ukai, On classical solutions in the large in time of two-dimensional Vlasov's equation,, Osaka J. Math., 15 (1978), 245. Google Scholar

[16]

S. Pankavich, Explicit solutions of the one-dimensional Vlasov-Poisson system with infinite mass,, Math. Methods Appl. Sci., 31 (2008), 375. doi: 10.1002/mma.915. Google Scholar

[17]

S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass,, Math. Methods Appl. Sci., 30 (2007), 529. doi: 10.1002/mma.796. Google Scholar

[18]

S. Pankavich, Global existence and increased spatial decay for the radial Vlasov-Poisson system with steady spatial asymptotics,, Transport Theory Statist. Phys., 36 (2007), 531. doi: 10.1080/00411450701703480. Google Scholar

[19]

S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics,, Comm. Partial Differential Equations, 31 (2006), 349. Google Scholar

[20]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, J. Diff. Eqns., 95 (1992), 281. Google Scholar

[21]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Commun. Part. Diff. Eqns., 16 (1991), 1313. Google Scholar

[22]

J. Schaeffer, Asymptotic growth bounds for the Vlasov-Poisson system,, Mathematical Methods in the Applied Sciences., 34 (2011), 262. doi: 10.1002/mma.1354. Google Scholar

[23]

J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics,, Comm. PDE, 28 (2003), 1057. doi: 10.1081/PDE-120021186. Google Scholar

[24]

J. Schaeffer, Steady spatial asymptotics for the Vlasov-Poisson system,, Math. Meth. Appl. Sci., 26 (2003), 273. doi: 10.1002/mma.354. Google Scholar

[25]

N. G. VanKampen and B. U. Felderhof, "Theoretical Methods in Plasma Physics,'', North-Holland, (1967). Google Scholar

[26]

S. Wollman, Global-in-time solutions of the two-dimensional Vlasov-Poisson system,, Comm. Pure Appl. Math., 33 (1980), 173. doi: 10.1002/cpa.3160330205. Google Scholar

show all references

References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics,, J. Diff. Eqns., 25 (1977), 342. doi: 10.1016/0022-0396(77)90049-3. Google Scholar

[2]

J. Batt and G. Rein, Global classical solutions of the periodic Vlasov-Poisson system in three dimensions,, C. R. Academy of Sci. Paris Sér. I Math., 313 (1991), 411. Google Scholar

[3]

E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rational Mech. Anal., 159 (2001), 85. doi: 10.1007/s002050100150. Google Scholar

[4]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Commun. PDE, 27 (2002), 791. doi: 10.1081/PDE-120002874. Google Scholar

[5]

R. Glassey, "The Cauchy Problem in Kinetic Theory,'', SIAM, (1996). doi: 10.1137/1.9781611971477. Google Scholar

[6]

R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation,, Trans. Th. Stat. Phys., 23 (1994), 411. doi: 10.1080/00411459408203873. Google Scholar

[7]

R. Glassey and J. Schaeffer, On time decay rates in Landau damping,, Commun. PDE, 20 (1995), 647. doi: 10.1080/03605309508821107. Google Scholar

[8]

R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities,, Arch. Rat. Mech. Anal., 92 (1986), 59. doi: 10.1007/BF00250732. Google Scholar

[9]

E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system,, Math. Meth. Appl. Sci., 16 (1993), 75. doi: 10.1002/mma.1670160202. Google Scholar

[10]

E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov-Equation, Parts I and II,, Math. Meth. Appl. Sci., 3 (1981), 229. Google Scholar

[11]

P.-E. Jabin, The Vlasov-Poisson system with infinite mass and energy,, J. Statist. Phys., 103 (2001), 1107. doi: 10.1023/A:1010321308267. Google Scholar

[12]

R. Kurth, Das Anfangswertproblem der stellardynamik,, Z. Astrophys., 30 (1952), 213. Google Scholar

[13]

L. D. Landau, On the vibrations of the electronic plasma,, Akad. Nauk SSSR. Shurnal Eksper. Fiz., 16 (1946), 574. Google Scholar

[14]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1991), 415. doi: 10.1007/BF01232273. Google Scholar

[15]

T. Okabe and S. Ukai, On classical solutions in the large in time of two-dimensional Vlasov's equation,, Osaka J. Math., 15 (1978), 245. Google Scholar

[16]

S. Pankavich, Explicit solutions of the one-dimensional Vlasov-Poisson system with infinite mass,, Math. Methods Appl. Sci., 31 (2008), 375. doi: 10.1002/mma.915. Google Scholar

[17]

S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass,, Math. Methods Appl. Sci., 30 (2007), 529. doi: 10.1002/mma.796. Google Scholar

[18]

S. Pankavich, Global existence and increased spatial decay for the radial Vlasov-Poisson system with steady spatial asymptotics,, Transport Theory Statist. Phys., 36 (2007), 531. doi: 10.1080/00411450701703480. Google Scholar

[19]

S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics,, Comm. Partial Differential Equations, 31 (2006), 349. Google Scholar

[20]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, J. Diff. Eqns., 95 (1992), 281. Google Scholar

[21]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Commun. Part. Diff. Eqns., 16 (1991), 1313. Google Scholar

[22]

J. Schaeffer, Asymptotic growth bounds for the Vlasov-Poisson system,, Mathematical Methods in the Applied Sciences., 34 (2011), 262. doi: 10.1002/mma.1354. Google Scholar

[23]

J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics,, Comm. PDE, 28 (2003), 1057. doi: 10.1081/PDE-120021186. Google Scholar

[24]

J. Schaeffer, Steady spatial asymptotics for the Vlasov-Poisson system,, Math. Meth. Appl. Sci., 26 (2003), 273. doi: 10.1002/mma.354. Google Scholar

[25]

N. G. VanKampen and B. U. Felderhof, "Theoretical Methods in Plasma Physics,'', North-Holland, (1967). Google Scholar

[26]

S. Wollman, Global-in-time solutions of the two-dimensional Vlasov-Poisson system,, Comm. Pure Appl. Math., 33 (1980), 173. doi: 10.1002/cpa.3160330205. Google Scholar

[1]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[2]

Christophe Pallard. Growth estimates and uniform decay for a collisionless plasma. Kinetic & Related Models, 2011, 4 (2) : 549-567. doi: 10.3934/krm.2011.4.549

[3]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[4]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[5]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[6]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[7]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[8]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[9]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[10]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[11]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[12]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[13]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[14]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[15]

Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173

[16]

Pedro Isaza, Jorge Mejía. On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1239-1255. doi: 10.3934/cpaa.2011.10.1239

[17]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[18]

Kazuo Aoki, François Golse. On the speed of approach to equilibrium for a collisionless gas. Kinetic & Related Models, 2011, 4 (1) : 87-107. doi: 10.3934/krm.2011.4.87

[19]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[20]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]