March  2011, 4(1): 153-167. doi: 10.3934/krm.2011.4.153

On a kinetic BGK model for slow chemical reactions

1. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma, Italy, Italy

Received  July 2010 Revised  October 2010 Published  January 2011

A recently proposed consistent BGK-type approach for chemically reacting gas mixtures is discussed, which accounts for the correct rates of transfer for mass, momentum and energy, and recovers the exact conservation equations and collision equilibria, including mass action law. In particular, the hydrodynamic limit is derived by a Chapman-Enskog procedure, and compared to existing results for the reactive and non-reactive cases.
Citation: Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153
References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'', Dover, (1965). Google Scholar

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures,, J. Stat. Phys., 106 (2002), 993. doi: 10.1023/A:1014033703134. Google Scholar

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory,, Phys. Fluids A, 2 (1990), 1867. doi: 10.1063/1.857661. Google Scholar

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases,, Phys. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511. Google Scholar

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction,, Continuum Mech. Thermodyn., 14 (2002), 207. doi: 10.1007/s001610100066. Google Scholar

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures,, Applications of Mathematics, 50 (2005), 43. doi: 10.1007/s10492-005-0003-5. Google Scholar

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures,, in, (2008), 21. Google Scholar

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.036327. Google Scholar

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 112. Google Scholar

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer Verlag, (1988). Google Scholar

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'', Cambridge University Press, (2000). Google Scholar

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'', University Press, (1970). Google Scholar

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'', Butterworths, (1964). Google Scholar

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture,, J. Phys. A, 36 (2003), 5381. doi: 10.1088/0305-4470/36/20/303. Google Scholar

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'', North Holland, (1962). Google Scholar

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Europ. J. Mech./B Fluids, 24 (2005), 219. doi: 10.1016/j.euromechflu.2004.07.004. Google Scholar

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems,, Proc. R. Soc. Lond. A, 307 (1968), 111. doi: 10.1098/rspa.1968.0178. Google Scholar

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'', North Holland, (1972). Google Scholar

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas,, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380. doi: 10.1063/1.857458. Google Scholar

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'', Birkhäuser Verlag, (1999). Google Scholar

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas,, J. Math. Chem., 26 (1999), 197. doi: 10.1023/A:1019194113816. Google Scholar

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures,, Physics of Fluids, 16 (2004), 4273. doi: 10.1063/1.1808651. Google Scholar

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'', Wiley, (2003). doi: 10.1002/0471461296. Google Scholar

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow,, Phys. of Fluids, 18 (2006). doi: 10.1063/1.2185691. Google Scholar

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chemical Engineering Science, 52 (1997), 861. doi: 10.1016/S0009-2509(96)00458-7. Google Scholar

[26]

K. K. Kuo, "Principles of Combustion,'', Wiley, (2005). Google Scholar

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes,, J. Phys. A: Math. Gen., 38 (2005), 10413. doi: 10.1088/0305-4470/38/48/012. Google Scholar

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Physica A, 272 (1999), 563. doi: 10.1016/S0378-4371(99)00336-2. Google Scholar

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser Verlag, (2002). Google Scholar

[30]

P. Welander, On the temperature jump in a rarefied gas,, Ark. Fys., 7 (1954), 507. Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'', Dover, (1965). Google Scholar

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures,, J. Stat. Phys., 106 (2002), 993. doi: 10.1023/A:1014033703134. Google Scholar

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory,, Phys. Fluids A, 2 (1990), 1867. doi: 10.1063/1.857661. Google Scholar

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases,, Phys. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511. Google Scholar

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction,, Continuum Mech. Thermodyn., 14 (2002), 207. doi: 10.1007/s001610100066. Google Scholar

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures,, Applications of Mathematics, 50 (2005), 43. doi: 10.1007/s10492-005-0003-5. Google Scholar

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures,, in, (2008), 21. Google Scholar

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.036327. Google Scholar

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 112. Google Scholar

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer Verlag, (1988). Google Scholar

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'', Cambridge University Press, (2000). Google Scholar

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'', University Press, (1970). Google Scholar

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'', Butterworths, (1964). Google Scholar

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture,, J. Phys. A, 36 (2003), 5381. doi: 10.1088/0305-4470/36/20/303. Google Scholar

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'', North Holland, (1962). Google Scholar

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Europ. J. Mech./B Fluids, 24 (2005), 219. doi: 10.1016/j.euromechflu.2004.07.004. Google Scholar

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems,, Proc. R. Soc. Lond. A, 307 (1968), 111. doi: 10.1098/rspa.1968.0178. Google Scholar

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'', North Holland, (1972). Google Scholar

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas,, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380. doi: 10.1063/1.857458. Google Scholar

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'', Birkhäuser Verlag, (1999). Google Scholar

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas,, J. Math. Chem., 26 (1999), 197. doi: 10.1023/A:1019194113816. Google Scholar

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures,, Physics of Fluids, 16 (2004), 4273. doi: 10.1063/1.1808651. Google Scholar

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'', Wiley, (2003). doi: 10.1002/0471461296. Google Scholar

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow,, Phys. of Fluids, 18 (2006). doi: 10.1063/1.2185691. Google Scholar

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chemical Engineering Science, 52 (1997), 861. doi: 10.1016/S0009-2509(96)00458-7. Google Scholar

[26]

K. K. Kuo, "Principles of Combustion,'', Wiley, (2005). Google Scholar

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes,, J. Phys. A: Math. Gen., 38 (2005), 10413. doi: 10.1088/0305-4470/38/48/012. Google Scholar

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Physica A, 272 (1999), 563. doi: 10.1016/S0378-4371(99)00336-2. Google Scholar

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser Verlag, (2002). Google Scholar

[30]

P. Welander, On the temperature jump in a rarefied gas,, Ark. Fys., 7 (1954), 507. Google Scholar

[1]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic & Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[2]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[3]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[4]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[5]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[6]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[7]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[8]

Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic & Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054

[9]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[10]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[11]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[12]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[13]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[14]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[15]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[16]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[17]

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

[18]

Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic & Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029

[19]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[20]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]