March  2011, 4(1): 139-151. doi: 10.3934/krm.2011.4.139

A numerical model of the Boltzmann equation related to the discontinuous Galerkin method

1. 

Dipartimento di Matematica e Informatica, Viale A. Doria 6, 95125 Catania, Italy

Received  September 2010 Revised  December 2010 Published  January 2011

We propose a new deterministic numerical model, based on the discontinuous Galerkin method, for solving the nonlinear Boltzmann equation for rarefied gases. A set of partial differential equations is derived and analyzed. The new model guarantees the conservation of the mass, momentum and energy for homogeneous solutions. We avoid any stochastic procedures in the treatment of the collision operator of the Boltzmamn equation.
Citation: Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139
References:
[1]

V. V. Aristov, "Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows,'', Kluwer Academic Publishers, (2001). Google Scholar

[2]

L. L. Baker and N. G. Hadjiconstantinou, Variance-reduced Monte Carlo solutions of the Boltzmann equation for low-speed gas flows: A discontinuous Galerkin formulation,, Int. J. Numer. Meth. Fluids, 58 (2008), 381. doi: 10.1002/fld.1724. Google Scholar

[3]

J. A. Carrillo, I. M. Gamba, A. Majorana and C.-W. Shu, A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices. Performance and comparisons with Monte Carlo methods,, Journal of Computational Physics, 184 (2003), 498. doi: 10.1016/S0021-9991(02)00032-3. Google Scholar

[4]

J. A. Carrillo, I. M. Gamba, A. Majorana and C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: Efficiency, boundary conditions and comparison to Monte Carlo methods,, Journal of Computational Physics, 214 (2006), 55. doi: 10.1016/j.jcp.2005.09.005. Google Scholar

[5]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer, (1988). Google Scholar

[6]

C. Cercignani, "Mathematical Methods in Kinetic Theory,'', Plenum, (1990). Google Scholar

[7]

Y. Cheng, I. M. Gamba, A. Majorana and C.-W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems for semiconductor devices,, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 3130. doi: 10.1016/j.cma.2009.05.015. Google Scholar

[8]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,, Journal of Scientific Computing, 16 (2001), 173. doi: 10.1023/A:1012873910884. Google Scholar

[9]

F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation,, Transport Theory Statist. Phys., 23 (1994), 313. doi: 10.1080/00411459408203868. Google Scholar

[10]

Y. Sone, T. Ohwada and K. Aoki, Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules,, Physics of Fluids A, 1 (1989), 363. doi: 10.1063/1.857457. Google Scholar

show all references

References:
[1]

V. V. Aristov, "Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows,'', Kluwer Academic Publishers, (2001). Google Scholar

[2]

L. L. Baker and N. G. Hadjiconstantinou, Variance-reduced Monte Carlo solutions of the Boltzmann equation for low-speed gas flows: A discontinuous Galerkin formulation,, Int. J. Numer. Meth. Fluids, 58 (2008), 381. doi: 10.1002/fld.1724. Google Scholar

[3]

J. A. Carrillo, I. M. Gamba, A. Majorana and C.-W. Shu, A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices. Performance and comparisons with Monte Carlo methods,, Journal of Computational Physics, 184 (2003), 498. doi: 10.1016/S0021-9991(02)00032-3. Google Scholar

[4]

J. A. Carrillo, I. M. Gamba, A. Majorana and C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: Efficiency, boundary conditions and comparison to Monte Carlo methods,, Journal of Computational Physics, 214 (2006), 55. doi: 10.1016/j.jcp.2005.09.005. Google Scholar

[5]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer, (1988). Google Scholar

[6]

C. Cercignani, "Mathematical Methods in Kinetic Theory,'', Plenum, (1990). Google Scholar

[7]

Y. Cheng, I. M. Gamba, A. Majorana and C.-W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems for semiconductor devices,, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 3130. doi: 10.1016/j.cma.2009.05.015. Google Scholar

[8]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,, Journal of Scientific Computing, 16 (2001), 173. doi: 10.1023/A:1012873910884. Google Scholar

[9]

F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation,, Transport Theory Statist. Phys., 23 (1994), 313. doi: 10.1080/00411459408203868. Google Scholar

[10]

Y. Sone, T. Ohwada and K. Aoki, Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules,, Physics of Fluids A, 1 (1989), 363. doi: 10.1063/1.857457. Google Scholar

[1]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[2]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[3]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[4]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[5]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[6]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[7]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[8]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic & Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[9]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[10]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[11]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[12]

Eric Dubach, Robert Luce, Jean-Marie Thomas. Pseudo-Conform Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra. Communications on Pure & Applied Analysis, 2009, 8 (1) : 237-254. doi: 10.3934/cpaa.2009.8.237

[13]

Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181

[14]

J. N. Lyness. Extrapolation expansions for Hanging-Chad-Type Galerkin integrals with plane triangular elements. Communications on Pure & Applied Analysis, 2006, 5 (2) : 337-347. doi: 10.3934/cpaa.2006.5.337

[15]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[16]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[17]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[18]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[19]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[20]

Marcin Studniarski. Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 389-398. doi: 10.3934/naco.2011.1.389

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]