May  2019, 15: 143-163. doi: 10.3934/jmd.2019017

Entropy and quasimorphisms

1. 

Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel

2. 

University of Regensburg, 93053 Regensburg, Germany and University of Wrocław, 50-137 Wrocław, Poland

Received  May 06, 2018 Revised  February 15, 2019 Published  June 2019

Let $ S $ be a compact oriented surface. We construct homogeneous quasimorphisms on $ {\rm Diff}(S, \operatorname{area}) $, on $ {\rm Diff}_0(S, \operatorname{area}) $, and on $ {\rm Ham}(S) $, generalizing the constructions of Gambaudo-Ghys and Polterovich.

We prove that there are infinitely many linearly independent homogeneous quasimorphisms on $ {\rm Diff}(S, \operatorname{area}) $, on $ {\rm Diff}_0(S, \operatorname{area}) $, and on $ {\rm Ham}(S) $ whose absolute values bound from below the topological entropy. In cases when $ S $ has a positive genus, the quasimorphisms we construct on $ {\rm Ham}(S) $ are $ C^0 $-continuous.

We define a bi-invariant metric on these groups, called the entropy metric, and show that it is unbounded. In particular, we reprove the fact that the autonomous metric on $ {\rm Ham}(S) $ is unbounded.

Citation: Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017
References:
[1]

Travaux de Thurston Sur Les Surfaces, Séminaire Orsay, With an English summary, Astérisque, 66–67, Société Mathématique de France, Paris, 1979.

[2]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and its Applications, 400, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-1-4757-6800-8.

[3]

M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol., 6 (2002), 69–89 (electronic). doi: 10.2140/gt.2002.6.69.

[4]

J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math., 22 (1969), 213-238. doi: 10.1002/cpa.3160220206.

[5]

J. S. Birman, Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974.

[6]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.

[7]

M. Brandenbursky, On quasi-morphisms from knot and braid invariants, J. Knot Theory Ramifications, 20 (2011), 1397-1417. doi: 10.1142/S0218216511009212.

[8]

M. Brandenbursky, Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces, Internat. J. Math., 26 (2015), 1550066, 29 pages. doi: 10.1142/S0129167X15500664.

[9]

M. Brandenbursky and J. Kȩdra, On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc, Algebr. Geom. Topol., 13 (2013), 795-816. doi: 10.2140/agt.2013.13.795.

[10]

M. Brandenbursky, J. Kedra and E. Shelukhin, On the autonomous norm on the group of Hamiltonian diffeomorphisms of the torus, Comm. Contemp. Math., 20 (2018), 1750042, 27pp. doi: 10.1142/S0219199717500420.

[11]

M. Brandenbursky and E. Shelukhin, On the Lp-geometry of autonomous Hamiltonian diffeomorphisms of surfaces, Math. Res. Lett., 22 (2015), 1275-1294. doi: 10.4310/MRL.2015.v22.n5.a1.

[12]

D. Burago, S. Ivanov and L. Polterovich, Conjugation-invariant norms on groups of geometric origin, in Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52, Math. Soc. Japan, Tokyo, 2008,221–250. doi: 10.2969/aspm/05210221.

[13]

D. Calegari, MSJ Memoirs, Vol. 20, Mathematical Society of Japan, Tokyo, 2009. doi: 10.1142/e018.

[14]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 324-366.

[15]

M. Entov, L. Polterovich and P. Py, On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296, Birkhäuser/Springer, New York, 2012,169–197. doi: 10.1007/978-0-8176-8277-4_8.

[16]

J.-M. Gambaudo and E. E. Pécou, Dynamical cocycles with values in the Artin braid group, Ergodic Theory Dynam. Systems, 19 (1999), 627-641. doi: 10.1017/S0143385799130207.

[17]

J.-M. Gambaudo and É. Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems, 24 (2004), 1591-1617. doi: 10.1017/S0143385703000737.

[18]

W. J. Harvey, Boundary structure of the modular group, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981,245–251.

[19]

T. Ishida, Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups, Proc. Amer. Math. Soc. Ser. B, 1 (2014), 43-51. doi: 10.1090/S2330-1511-2014-00002-X.

[20]

N. V. Ivanov, Subgroups of Teichmüller Modular Groups, Translated from the Russian by E. J. F. Primrose and revised by the author, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992.

[21]

D. Margalit, Thurston's work on surfaces [book review of MR3053012], Bull. Amer. Math. Soc. (N.S.), 51 (2014), 151-161. doi: 10.1090/S0273-0979-2013-01419-8.

[22]

H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149. doi: 10.1007/s002220050343.

[23]

L. Polterovich, Floer homology, dynamics and groups, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, 2006,417–438. doi: 10.1007/1-4020-4266-3_09.

[24]

L. Polterovich and E. Shelukhin, Autonomous Hamiltonian flows, Hofer's geometry and persistence modules, Selecta Math. (N.S.), 22 (2016), 227-296. doi: 10.1007/s00029-015-0201-2.

[25]

S. Schleimer, Notes on the complex of curves, http://homepages.warwick.ac.uk/ masgar/Maths/notes.pdf.

[26]

T. Tsuboi, On the uniform simplicity of diffeomorphism groups, in Differential Geometry, World Sci. Publ., Hackensack, NJ, 2009, 43–55. doi: 10.1142/9789814261173_0004.

[27]

T. Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of even-dimensional manifolds, Comment. Math. Helv., 87 (2012), 141-185. doi: 10.4171/CMH/251.

[28]

Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300. doi: 10.1007/BF02766215.

[29]

L. S. Young, Entropy of continuous flows on compact 2-manifolds, Topology, 16 (1977), 469-471. doi: 10.1016/0040-9383(77)90053-2.

show all references

References:
[1]

Travaux de Thurston Sur Les Surfaces, Séminaire Orsay, With an English summary, Astérisque, 66–67, Société Mathématique de France, Paris, 1979.

[2]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and its Applications, 400, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-1-4757-6800-8.

[3]

M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol., 6 (2002), 69–89 (electronic). doi: 10.2140/gt.2002.6.69.

[4]

J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math., 22 (1969), 213-238. doi: 10.1002/cpa.3160220206.

[5]

J. S. Birman, Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974.

[6]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.

[7]

M. Brandenbursky, On quasi-morphisms from knot and braid invariants, J. Knot Theory Ramifications, 20 (2011), 1397-1417. doi: 10.1142/S0218216511009212.

[8]

M. Brandenbursky, Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces, Internat. J. Math., 26 (2015), 1550066, 29 pages. doi: 10.1142/S0129167X15500664.

[9]

M. Brandenbursky and J. Kȩdra, On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc, Algebr. Geom. Topol., 13 (2013), 795-816. doi: 10.2140/agt.2013.13.795.

[10]

M. Brandenbursky, J. Kedra and E. Shelukhin, On the autonomous norm on the group of Hamiltonian diffeomorphisms of the torus, Comm. Contemp. Math., 20 (2018), 1750042, 27pp. doi: 10.1142/S0219199717500420.

[11]

M. Brandenbursky and E. Shelukhin, On the Lp-geometry of autonomous Hamiltonian diffeomorphisms of surfaces, Math. Res. Lett., 22 (2015), 1275-1294. doi: 10.4310/MRL.2015.v22.n5.a1.

[12]

D. Burago, S. Ivanov and L. Polterovich, Conjugation-invariant norms on groups of geometric origin, in Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52, Math. Soc. Japan, Tokyo, 2008,221–250. doi: 10.2969/aspm/05210221.

[13]

D. Calegari, MSJ Memoirs, Vol. 20, Mathematical Society of Japan, Tokyo, 2009. doi: 10.1142/e018.

[14]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 324-366.

[15]

M. Entov, L. Polterovich and P. Py, On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296, Birkhäuser/Springer, New York, 2012,169–197. doi: 10.1007/978-0-8176-8277-4_8.

[16]

J.-M. Gambaudo and E. E. Pécou, Dynamical cocycles with values in the Artin braid group, Ergodic Theory Dynam. Systems, 19 (1999), 627-641. doi: 10.1017/S0143385799130207.

[17]

J.-M. Gambaudo and É. Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems, 24 (2004), 1591-1617. doi: 10.1017/S0143385703000737.

[18]

W. J. Harvey, Boundary structure of the modular group, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981,245–251.

[19]

T. Ishida, Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups, Proc. Amer. Math. Soc. Ser. B, 1 (2014), 43-51. doi: 10.1090/S2330-1511-2014-00002-X.

[20]

N. V. Ivanov, Subgroups of Teichmüller Modular Groups, Translated from the Russian by E. J. F. Primrose and revised by the author, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992.

[21]

D. Margalit, Thurston's work on surfaces [book review of MR3053012], Bull. Amer. Math. Soc. (N.S.), 51 (2014), 151-161. doi: 10.1090/S0273-0979-2013-01419-8.

[22]

H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149. doi: 10.1007/s002220050343.

[23]

L. Polterovich, Floer homology, dynamics and groups, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, 2006,417–438. doi: 10.1007/1-4020-4266-3_09.

[24]

L. Polterovich and E. Shelukhin, Autonomous Hamiltonian flows, Hofer's geometry and persistence modules, Selecta Math. (N.S.), 22 (2016), 227-296. doi: 10.1007/s00029-015-0201-2.

[25]

S. Schleimer, Notes on the complex of curves, http://homepages.warwick.ac.uk/ masgar/Maths/notes.pdf.

[26]

T. Tsuboi, On the uniform simplicity of diffeomorphism groups, in Differential Geometry, World Sci. Publ., Hackensack, NJ, 2009, 43–55. doi: 10.1142/9789814261173_0004.

[27]

T. Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of even-dimensional manifolds, Comment. Math. Helv., 87 (2012), 141-185. doi: 10.4171/CMH/251.

[28]

Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300. doi: 10.1007/BF02766215.

[29]

L. S. Young, Entropy of continuous flows on compact 2-manifolds, Topology, 16 (1977), 469-471. doi: 10.1016/0040-9383(77)90053-2.

Figure 3.1.  Loop $ \gamma $ and arcs $ a $ and $ b $
[1]

Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731

[2]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[3]

Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007

[4]

Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231

[5]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[6]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[7]

Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075

[8]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[9]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[10]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[11]

Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555

[12]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[13]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[14]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[15]

Richard Miles, Michael Björklund. Entropy range problems and actions of locally normal groups. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 981-989. doi: 10.3934/dcds.2009.25.981

[16]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[17]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[18]

Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541

[19]

Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25

[20]

Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (10)
  • HTML views (20)
  • Cited by (0)

Other articles
by authors

[Back to Top]