2019, 14: 227-242. doi: 10.3934/jmd.2019008

A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle

Institut de Mathématiques de Jussieu – Paris Rive Gauche, UMR 7586, Bátiment Sophie Germain, 75205 PARIS Cedex 13, France

Dedicated to the memory of Bill Veech

Received  November 16, 2018 Revised  January 26, 2019 Published  March 2019

For all $ d $ belonging to a density-$ 1/8 $ subset of the natural numbers, we give an example of a square-tiled surface conjecturally realizing the group $ \mathrm{SO}^*(2d) $ in its standard representation as the Zariski-closure of a factor of its monodromy. We prove that this conjecture holds for the first elements of this subset, showing that the group $ \mathrm{SO}^*(2d) $ is realizable for every $ 11 \leq d \leq 299 $ such that $ d = 3 \bmod 8 $, except possibly for $ d = 35 $ and $ d = 203 $.

Citation: Rodolfo Gutiérrez-Romo. A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle. Journal of Modern Dynamics, 2019, 14: 227-242. doi: 10.3934/jmd.2019008
References:
[1]

A. AvilaC. Matheus and J.-C. Yoccoz, The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces, J. Mod. Dyn., 14 (2019), 21-54. doi: 10.3934/jmd.2019002. Google Scholar

[2]

P. Deligne, La conjecture de Weil. Ⅱ, Publ. Math. Inst. Hautes Études Sci., 52 (1980), 137-252. Google Scholar

[3]

A. Eskin, S. Filip and A. Wright, The algebraic hull of the Kontsevich–Zorich cocycle, Ann. of Math. (2), 188 (2018), 281–313. doi: 10.4007/annals.2018.188.1.5. Google Scholar

[4]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $ \mathfrak sl(2, \mathbb{R})$ action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95-324. doi: 10.1007/s10240-018-0099-2. Google Scholar

[5]

A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $ \mathfrak sl(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673–721. doi: 10.4007/annals.2015.182.2.7. Google Scholar

[6]

S. FilipG. Forni and C. Matheus, Quaternionic covers and monodromy of the Kontsevich–Zorich cocycle in orthogonal groups, J. Eur. Math. Soc. (JEMS), 20 (2018), 165-198. doi: 10.4171/JEMS/763. Google Scholar

[7]

S. Filip, Semisimplicity and rigidity of the Kontsevich–Zorich cocycle, Invent. Math., 205 (2016), 617-670. doi: 10.1007/s00222-015-0643-3. Google Scholar

[8]

S. Filip, Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Math. J., 166 (2017), 657-706. doi: 10.1215/00127094-3715806. Google Scholar

[9]

G. Forni and C. Matheus, Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., 8 (2014), 271-436. doi: 10.3934/jmd.2014.8.271. Google Scholar

[10]

C. Matheus, J.-C. Yoccoz and D. Zmiaikou, Homology of origamis with symmetries, Ann. Inst. Fourier (Grenoble), 64 (2014), 1131–1176., doi: 10.5802/aif.2876. Google Scholar

[11]

C. Matheus, J.-C. Yoccoz and D. Zmiaikou, Corrigendum to "Homology of origamis with symmetries", Ann. Inst. Fourier (Grenoble), 66 (2016), 1279–1284., doi: 10.5802/aif.3038. Google Scholar

[12]

C. A. M. Peters and J. H. M. Steenbrink, Monodromy of variations of Hodge structure, Acta Appl. Math., 75 (2003), 183-194. doi: 10.1023/A:1022344213544. Google Scholar

[13]

A. Wright, Translation surfaces and their orbit closures: An introduction for a broad audience, EMS Surv. Math. Sci., 2 (2015), 63-108. doi: 10.4171/EMSS/9. Google Scholar

[14]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,437–583. doi: 10.1007/978-3-540-31347-2_13. Google Scholar

show all references

References:
[1]

A. AvilaC. Matheus and J.-C. Yoccoz, The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces, J. Mod. Dyn., 14 (2019), 21-54. doi: 10.3934/jmd.2019002. Google Scholar

[2]

P. Deligne, La conjecture de Weil. Ⅱ, Publ. Math. Inst. Hautes Études Sci., 52 (1980), 137-252. Google Scholar

[3]

A. Eskin, S. Filip and A. Wright, The algebraic hull of the Kontsevich–Zorich cocycle, Ann. of Math. (2), 188 (2018), 281–313. doi: 10.4007/annals.2018.188.1.5. Google Scholar

[4]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $ \mathfrak sl(2, \mathbb{R})$ action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95-324. doi: 10.1007/s10240-018-0099-2. Google Scholar

[5]

A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $ \mathfrak sl(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673–721. doi: 10.4007/annals.2015.182.2.7. Google Scholar

[6]

S. FilipG. Forni and C. Matheus, Quaternionic covers and monodromy of the Kontsevich–Zorich cocycle in orthogonal groups, J. Eur. Math. Soc. (JEMS), 20 (2018), 165-198. doi: 10.4171/JEMS/763. Google Scholar

[7]

S. Filip, Semisimplicity and rigidity of the Kontsevich–Zorich cocycle, Invent. Math., 205 (2016), 617-670. doi: 10.1007/s00222-015-0643-3. Google Scholar

[8]

S. Filip, Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Math. J., 166 (2017), 657-706. doi: 10.1215/00127094-3715806. Google Scholar

[9]

G. Forni and C. Matheus, Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., 8 (2014), 271-436. doi: 10.3934/jmd.2014.8.271. Google Scholar

[10]

C. Matheus, J.-C. Yoccoz and D. Zmiaikou, Homology of origamis with symmetries, Ann. Inst. Fourier (Grenoble), 64 (2014), 1131–1176., doi: 10.5802/aif.2876. Google Scholar

[11]

C. Matheus, J.-C. Yoccoz and D. Zmiaikou, Corrigendum to "Homology of origamis with symmetries", Ann. Inst. Fourier (Grenoble), 66 (2016), 1279–1284., doi: 10.5802/aif.3038. Google Scholar

[12]

C. A. M. Peters and J. H. M. Steenbrink, Monodromy of variations of Hodge structure, Acta Appl. Math., 75 (2003), 183-194. doi: 10.1023/A:1022344213544. Google Scholar

[13]

A. Wright, Translation surfaces and their orbit closures: An introduction for a broad audience, EMS Surv. Math. Sci., 2 (2015), 63-108. doi: 10.4171/EMSS/9. Google Scholar

[14]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,437–583. doi: 10.1007/978-3-540-31347-2_13. Google Scholar

Figure 1.  An illustration of $X_g^{(d)}$
Figure 2.  An illustration of $\widetilde{X}^{(3)}$ showing its four singularities. Horizontally, the each copy of $X^{(3)}$ is cyclically glued to the copy on its right or left, but this does not hold for the vertical gluings (as the top sides of $X_k^{(3)}$, for example, are glued to the bottom sides of $X_{-i}^{(3)}$)
Figure 3.  The $\mathrm{SL}(2, \mathbb{Z})$-orbit of $X^{(d)}$ using $T$ and $S$ as generators. It consists of three distinct square-tiled surfaces, which we call $Z^{(d)}$, $X^{(d)}$ and $Y^{(d)}$ from left to right. The labels in the $Y^{(d)}$ and $Z^{(d)}$ show the identification of the sides. Unlabelled horizontal sides are identified with the only horizontal having the same horizontal coordinates, and similarly for unlabelled vertical sides
Figure 4.  The "canonical" fundamental domain of the action of the theta subgroup on the upper half-plane. The resulting Teichmüller curve has genus zero and two cusps
Figure 5.  An illustration of $Y_g^{(d)}$ and of the cut-and-paste operations used to obtain this description
Figure 6.  Direction (-1, 2) on $Y_g^{(d)}$
Figure 7.  Direction $(-1, 2)$ on $T^2 \cdot Y_g^{(d)}$. The gluings are cyclically shifted and the signs of elements of $Q$ on the labels $\eta_\bullet^1$ are changed
Table 1.  Character table of Q
Dimension$1$$-1$$\pm i$$\pm j$$\pm k$
$\chi_1$$1$$1$$1$$1$$1$$1$
$\chi_i$$1$$1$$1$$1$$-1$$-1$
$\chi_j$$1$$1$$1$$-1$$1$$-1$
$\chi_k$$1$$1$$1$$-1$$-1$$1$
$\mathop{\mathrm{tr}} \chi_2$$2$$2$$-2$$0$$0$$0$
Dimension$1$$-1$$\pm i$$\pm j$$\pm k$
$\chi_1$$1$$1$$1$$1$$1$$1$
$\chi_i$$1$$1$$1$$1$$-1$$-1$
$\chi_j$$1$$1$$1$$-1$$1$$-1$
$\chi_k$$1$$1$$1$$-1$$-1$$1$
$\mathop{\mathrm{tr}} \chi_2$$2$$2$$-2$$0$$0$$0$
Table 2.  The index of ${\rm SL}(\widetilde{X}^{(d)})$ and the genus and number of cusps of the resulting Teichmüller curve for small values of $d$
$d$IndexGenusCusps
$3$$12$$0$$3$
$11$$16896$$225$$960$
$19$$1867776$$30721$$94208$
$d$IndexGenusCusps
$3$$12$$0$$3$
$11$$16896$$225$$960$
$19$$1867776$$30721$$94208$
[1]

Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405

[2]

Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002

[3]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[4]

Giovanni Forni, Carlos Matheus, Anton Zorich. Square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 285-318. doi: 10.3934/jmd.2011.5.285

[5]

Alex Eskin, Maxim Kontsevich, Anton Zorich. Lyapunov spectrum of square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 319-353. doi: 10.3934/jmd.2011.5.319

[6]

Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006

[7]

Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355

[8]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

[9]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[10]

Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433

[11]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[12]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[13]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[14]

Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395

[15]

Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715

[16]

Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535

[17]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[18]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[19]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[20]

Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367

2018 Impact Factor: 0.295

Article outline

Figures and Tables

[Back to Top]