2019, 14: 87-120. doi: 10.3934/jmd.2019004

Equidistribution of saddle connections on translation surfaces

Mathematics Department, Stony Brook University, Stony Brook, NY 11794-3651, USA

Received  September 05, 2017 Revised  December 20, 2017 Published  March 2019

Fund Project: Supported in part by NSF grant DGE-114747

Fix a translation surface $ X $, and consider the measures on $ X $ coming from averaging the uniform measures on all the saddle connections of length at most $ R $. Then, as $ R\to\infty $, the weak limit of these measures exists and is equal to the area measure on $ X $ coming from the flat metric. This implies that, on a rational-angled billiard table, the billiard trajectories that start and end at a corner of the table are equidistributed on the table. We also show that any weak limit of a subsequence of the counting measures on $ S^1 $ given by the angles of all saddle connections of length at most $ R_n $, as $ R_n\to\infty $, is in the Lebesgue measure class. The proof of the equidistribution result uses the angle result, together with the theorem of Kerckhoff-Masur-Smillie that the directional flow on a surface is uniquely ergodic in almost every direction.

Citation: Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004
References:
[1]

J. S. Athreya, Quantitative recurrence and large deviations for Teichmuller geodesic flow, Geom. Dedicata, 119 (2006), 121-140. doi: 10.1007/s10711-006-9058-z.

[2]

M. BoshernitzanG. GalperinT. Krüger and S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. Amer. Math. Soc., 350 (1998), 3523-3535. doi: 10.1090/S0002-9947-98-02089-3.

[3]

R. Bowen, The equidistribution of closed geodesics, Amer. J. Math., 94 (1972), 413-423. doi: 10.2307/2374628.

[4]

J. Chaika, Homogeneous approximation for flows on translation surfaces, preprint, 2011, arXiv: 1110.6167.

[5]

B. Dozier, Convergence of Siegel–Veech constants, Geometriae Dedicata, (2018), 1–12. doi: 10.1007/s10711-018-0332-7.

[6]

A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory and Dynamical Systems, 21 (2001), 443-478. doi: 10.1017/S0143385701001225.

[7]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984.

[8]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, $\mathbb{R}$) action on moduli space, Ann. of Math. (2), 182 (2015), 673-721. doi: 10.4007/annals.2015.182.2.7.

[9]

A. Eskin, Counting problems in moduli space, Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006, 581–595. doi: 10.1016/S1874-575X(06)80034-2.

[10]

R. H. Fox and R. B. Kershner, Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150. doi: 10.1215/S0012-7094-36-00213-2.

[11]

S. KerckhoffH. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311. doi: 10.2307/1971280.

[12]

H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, 215–228. doi: 10.1007/978-1-4613-9602-4_20.

[13]

H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory and Dynamical Systems, 10 (1990), 151-176. doi: 10.1017/S0143385700005459.

[14]

L. Marchese, R. Treviño and S. Weil, Diophantine approximations for translation surfaces and planar resonant sets, preprint, 2016, arXiv: 1502.05007v2.

[15]

A. Nevo, Equidistribution in measure-preserving actions of semisimple groups: Case of $SL_2(\mathbb{R})$, preprint, 2017, arXiv: 1708.03886.

[16]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.

[17]

W. A. Veech, Siegel measures, Ann. of Math. (2), 148 (1998), 895-944. doi: 10.2307/121033.

[18]

Y. Vorobets, Periodic geodesics on generic translation surfaces, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 205–258. doi: 10.1090/conm/385/07199.

[19]

A. Wright, Translation surfaces and their orbit closures: An introduction for a broad audience, EMS Surv. Math. Sci., 2 (2015), 63-108. doi: 10.4171/EMSS/9.

[20]

A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons, Mat. Zametki, 18 (1975), 291-300.

[21]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry, I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13.

show all references

References:
[1]

J. S. Athreya, Quantitative recurrence and large deviations for Teichmuller geodesic flow, Geom. Dedicata, 119 (2006), 121-140. doi: 10.1007/s10711-006-9058-z.

[2]

M. BoshernitzanG. GalperinT. Krüger and S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. Amer. Math. Soc., 350 (1998), 3523-3535. doi: 10.1090/S0002-9947-98-02089-3.

[3]

R. Bowen, The equidistribution of closed geodesics, Amer. J. Math., 94 (1972), 413-423. doi: 10.2307/2374628.

[4]

J. Chaika, Homogeneous approximation for flows on translation surfaces, preprint, 2011, arXiv: 1110.6167.

[5]

B. Dozier, Convergence of Siegel–Veech constants, Geometriae Dedicata, (2018), 1–12. doi: 10.1007/s10711-018-0332-7.

[6]

A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory and Dynamical Systems, 21 (2001), 443-478. doi: 10.1017/S0143385701001225.

[7]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984.

[8]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, $\mathbb{R}$) action on moduli space, Ann. of Math. (2), 182 (2015), 673-721. doi: 10.4007/annals.2015.182.2.7.

[9]

A. Eskin, Counting problems in moduli space, Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006, 581–595. doi: 10.1016/S1874-575X(06)80034-2.

[10]

R. H. Fox and R. B. Kershner, Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150. doi: 10.1215/S0012-7094-36-00213-2.

[11]

S. KerckhoffH. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311. doi: 10.2307/1971280.

[12]

H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, 215–228. doi: 10.1007/978-1-4613-9602-4_20.

[13]

H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory and Dynamical Systems, 10 (1990), 151-176. doi: 10.1017/S0143385700005459.

[14]

L. Marchese, R. Treviño and S. Weil, Diophantine approximations for translation surfaces and planar resonant sets, preprint, 2016, arXiv: 1502.05007v2.

[15]

A. Nevo, Equidistribution in measure-preserving actions of semisimple groups: Case of $SL_2(\mathbb{R})$, preprint, 2017, arXiv: 1708.03886.

[16]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.

[17]

W. A. Veech, Siegel measures, Ann. of Math. (2), 148 (1998), 895-944. doi: 10.2307/121033.

[18]

Y. Vorobets, Periodic geodesics on generic translation surfaces, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 205–258. doi: 10.1090/conm/385/07199.

[19]

A. Wright, Translation surfaces and their orbit closures: An introduction for a broad audience, EMS Surv. Math. Sci., 2 (2015), 63-108. doi: 10.4171/EMSS/9.

[20]

A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons, Mat. Zametki, 18 (1975), 291-300.

[21]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry, I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13.

Figure 1.  Saddle connections of length at most $R = 7$ on a genus two translation surface (opposite sides are identified), in units where the height of the figure is approximately 2. The thickness of each saddle connection is drawn inversely proportional to its length (so the total amount of "paint" used to draw a saddle connection is independent of its length). This choice of thickness is meant to represent the measures $\mu_s$, which are all probability measures, in Theorem 1.1. That theorem says that, as the length bound $R$ goes to infinity, the picture will be uniformly colored. This picture was generated with the help of Ronen Mukamel's $\texttt{triangulated\_surfaces}$ SAGE package.
Figure 2.  Opposite sides of the polygon are identified to give a genus two translation surface. A cylinder is shown, together with a long saddle connection contained in that cylinder.
Figure 3.  Regions used in proof of Lemma 2.2
Figure 4.  Proof of Lemma 4.1. The red points are group $A_1$, while the blue are $A_2$.
Figure 5.  Adding a saddle connection to a complex, in proof of Proposition 5.4.
Figure 6.  Comparing averages for Lemma 5.8 (Shadowing)
[1]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

[2]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[3]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[4]

Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367

[5]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[6]

Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405

[7]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[8]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[9]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[10]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[11]

Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535

[12]

Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems & Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039

[13]

Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002

[14]

Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715

[15]

Dong Han Kim, Luca Marchese, Stefano Marmi. Long hitting time for translation flows and L-shaped billiards. Journal of Modern Dynamics, 2019, 14: 291-353. doi: 10.3934/jmd.2019011

[16]

Anna Lenzhen, Babak Modami, Kasra Rafi. Teichmüller geodesics with $ d$-dimensional limit sets. Journal of Modern Dynamics, 2018, 12: 261-283. doi: 10.3934/jmd.2018010

[17]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[18]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[19]

Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002

[20]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (17)
  • HTML views (133)
  • Cited by (0)

Other articles
by authors

[Back to Top]