2018, 13: 271-284. doi: 10.3934/jmd.2018021

Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Received  April 30, 2017 Revised  November 22, 2017 Published  December 2018

Fund Project: Supported by the National Research Foundation of Korea (NRF) grant funded by the MEST 2015R1A3A2031159

We show that an arbitrary factor map $\pi :X \to Y$ on an irreducible subshift of finite type is a composition of a finite-to-one factor code and a class degree one factor code. Using this structure theorem on infinite-to-one factor codes, we then prove that any equilibrium state $\nu $ on $Y$ for a potential function of sufficient regularity lifts to a unique measure of maximal relative entropy on $X$. This answers a question raised by Boyle and Petersen (for lifts of Markov measures) and generalizes the earlier known special case of finite-to-one factor codes.

Citation: Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021
References:
[1]

M. Allahbakhshi, J. Antonioli and J. Yoo, Relative equilibrium states and class degree, Ergodic Theory Dynam. Systems, accepted, (2017). doi: 10.1017/etds.2017.50.

[2]

M. Allahbakhshi and A. Quas, Class degree and relative maximal entropy, Trans. Amer. Math. Soc., 365 (2013), 1347-1368. doi: 10.1090/S0002-9947-2012-05637-6.

[3]

M. AllahbakhshiS. Hong and U. Jung, Structure of transition classes for factor codes on shifts of finite type, Ergodic Theory and Dynamical Systems, 35 (2015), 2353-2370. doi: 10.1017/etds.2014.39.

[4]

J. Antonioli, Compensation functions for factors of shifts of finite type, Ergodic Theory and Dynamical Systems, 36 (2016), 375-389. doi: 10.1017/etds.2014.63.

[5]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, Berlin, 1975.

[6]

M. Boyle and K. Petersen, Hidden Markov processes in the context of symbolic dynamics, in Entropy of Hidden Markov Processes and Connections to Dynamical Systems, London Mathematical Society Lecture Note Series, 385, Cambridge, 2011, 5-71.

[7]

M. Boyle and S. Tuncel, Infinite-to-one codes and Markov measures, Trans. Amer. Math. Soc., 285 (1984), 657-684. doi: 10.1090/S0002-9947-1984-0752497-0.

[8]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511626302.

[9]

K. PetersenA. Quas and S. Shin, Measures of maximal relative entropy, Ergodic Theory Dynam. Systems, 23 (2003), 207-223. doi: 10.1017/S0143385702001153.

[10]

S. Tuncel, Conditional pressure and coding, Israel Journal of Mathematics, 39 (1981), 101-112. doi: 10.1007/BF02762856.

[11]

J. Yoo, Measures of maximal relative entropy with full support, Ergodic Theory Dynam. Systems, 31 (2010), 1889-1899. doi: 10.1017/S0143385710000581.

show all references

References:
[1]

M. Allahbakhshi, J. Antonioli and J. Yoo, Relative equilibrium states and class degree, Ergodic Theory Dynam. Systems, accepted, (2017). doi: 10.1017/etds.2017.50.

[2]

M. Allahbakhshi and A. Quas, Class degree and relative maximal entropy, Trans. Amer. Math. Soc., 365 (2013), 1347-1368. doi: 10.1090/S0002-9947-2012-05637-6.

[3]

M. AllahbakhshiS. Hong and U. Jung, Structure of transition classes for factor codes on shifts of finite type, Ergodic Theory and Dynamical Systems, 35 (2015), 2353-2370. doi: 10.1017/etds.2014.39.

[4]

J. Antonioli, Compensation functions for factors of shifts of finite type, Ergodic Theory and Dynamical Systems, 36 (2016), 375-389. doi: 10.1017/etds.2014.63.

[5]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, Berlin, 1975.

[6]

M. Boyle and K. Petersen, Hidden Markov processes in the context of symbolic dynamics, in Entropy of Hidden Markov Processes and Connections to Dynamical Systems, London Mathematical Society Lecture Note Series, 385, Cambridge, 2011, 5-71.

[7]

M. Boyle and S. Tuncel, Infinite-to-one codes and Markov measures, Trans. Amer. Math. Soc., 285 (1984), 657-684. doi: 10.1090/S0002-9947-1984-0752497-0.

[8]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511626302.

[9]

K. PetersenA. Quas and S. Shin, Measures of maximal relative entropy, Ergodic Theory Dynam. Systems, 23 (2003), 207-223. doi: 10.1017/S0143385702001153.

[10]

S. Tuncel, Conditional pressure and coding, Israel Journal of Mathematics, 39 (1981), 101-112. doi: 10.1007/BF02762856.

[11]

J. Yoo, Measures of maximal relative entropy with full support, Ergodic Theory Dynam. Systems, 31 (2010), 1889-1899. doi: 10.1017/S0143385710000581.

[1]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[2]

Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279

[3]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[4]

Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72

[5]

Florian Rupp, Jürgen Scheurle. Classification of a class of relative equilibria in three body coulomb systems. Conference Publications, 2011, 2011 (Special) : 1254-1262. doi: 10.3934/proc.2011.2011.1254

[6]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[7]

Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421

[8]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[9]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131

[10]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[11]

Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435

[12]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[13]

Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018

[14]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[15]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[16]

Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139

[17]

Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123

[18]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[19]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[20]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

2018 Impact Factor: 0.295

Article outline

Figures and Tables

[Back to Top]