2017, 11: 409-423. doi: 10.3934/jmd.2017016

A disconnected deformation space of rational maps

1. 

Department of Mathematics, Florida State University, 1017 Academic Way, 208 LOV, Tallahassee, FL 32306-4510, USA

2. 

Department of Mathematics, University of Michigan, East Hall, 530 Church Street, Ann Arbor, MI 48109, USA

Received  November 2016 Revised  February 10, 2017 Published  November 2017

Fund Project: EH: Supported in part by a collaboration grant from the Simons Foundation #209171.
SK: Supported in part by the NSF and the Sloan Foundation

The deformation space of a branched cover $f:(S^2,A)\to (S^2,B)$ is a complex submanifold of a certain Teichmüller space, which consists of classes of marked rational maps $F:(\mathbb{P}^1,A')\to (\mathbb{P}^1,B')$ that are combinatorially equivalent to $f$. In the case $A=B$, under a mild assumption on $f$, William Thurston gave a topological criterion for which the deformation space of $f:(S^2,A)\to (S^2,B)$ is nonempty, and he proved that it is always connected. We show that if $A\subsetneq B$, then the deformation space need not be connected. We exhibit a family of quadratic rational maps for which the associated deformation spaces are disconnected; in fact, each has infinitely many components.

Citation: Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016
References:
[1]

J. Birman, Braids, Links and Mapping Class Groups, Annals of Math. Studies, No. 82, Princeton University Press, Princeton N. J., 1974. Google Scholar

[2]

X. Buff, G. Cui and L. Tan, Teichmüller spaces and holomorphic dynamics, in Handbook of Teichmüller Theory, Vol. Ⅳ (ed. A. Papadopoulos), IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, 2014,717–756. doi: 10.4171/117-1/17. Google Scholar

[3]

A. Douady and J. H. Hubbard, A Proof of Thurston's characterization of rational functions, Acta Math., 171 (1993), 263-297. doi: 10.1007/BF02392534. Google Scholar

[4]

A. Epstein, Transversality in holomorphic dynamics, manuscript available at http://www.warwick.ac.uk/~mases.Google Scholar

[5]

T. Firsova, J. Kahn and N. Selinger, On deformation spaces of quadratic rational maps, preprint, 2016.Google Scholar

[6]

S. Koch, Teichmüller theory and critically finite endomorphisms, Adv. Math., 248 (2013), 573-617. doi: 10.1016/j.aim.2013.08.019. Google Scholar

[7]

S. KochK. Pilgrim and N. Selinger, Pullback invariants of Thurston maps, Trans. Amer. Math. Soc., 368 (2016), 4621-4655. doi: 10.1090/tran/6482. Google Scholar

[8]

J. Milnor, On Lattès maps, in Dynamics on the Riemann Sphere, a Bodil Branner Festschrift (eds. P. Hjorth and C. L. Petersen), Eur. Math. Soc., Zürich, 2006, 9–43. doi: 10.4171/011-1/1. Google Scholar

[9]

J. Milnor, Geometry and dynamics of quadratic rational maps, with an appendix by the author and Lei Tan, Experiment. Math., 2 (1993), 37-83. doi: 10.1080/10586458.1993.10504267. Google Scholar

[10]

M. Rees, Views of parameter space: Topographer and Resident, Astérisque, 288 (2003), 1-418. Google Scholar

show all references

References:
[1]

J. Birman, Braids, Links and Mapping Class Groups, Annals of Math. Studies, No. 82, Princeton University Press, Princeton N. J., 1974. Google Scholar

[2]

X. Buff, G. Cui and L. Tan, Teichmüller spaces and holomorphic dynamics, in Handbook of Teichmüller Theory, Vol. Ⅳ (ed. A. Papadopoulos), IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, 2014,717–756. doi: 10.4171/117-1/17. Google Scholar

[3]

A. Douady and J. H. Hubbard, A Proof of Thurston's characterization of rational functions, Acta Math., 171 (1993), 263-297. doi: 10.1007/BF02392534. Google Scholar

[4]

A. Epstein, Transversality in holomorphic dynamics, manuscript available at http://www.warwick.ac.uk/~mases.Google Scholar

[5]

T. Firsova, J. Kahn and N. Selinger, On deformation spaces of quadratic rational maps, preprint, 2016.Google Scholar

[6]

S. Koch, Teichmüller theory and critically finite endomorphisms, Adv. Math., 248 (2013), 573-617. doi: 10.1016/j.aim.2013.08.019. Google Scholar

[7]

S. KochK. Pilgrim and N. Selinger, Pullback invariants of Thurston maps, Trans. Amer. Math. Soc., 368 (2016), 4621-4655. doi: 10.1090/tran/6482. Google Scholar

[8]

J. Milnor, On Lattès maps, in Dynamics on the Riemann Sphere, a Bodil Branner Festschrift (eds. P. Hjorth and C. L. Petersen), Eur. Math. Soc., Zürich, 2006, 9–43. doi: 10.4171/011-1/1. Google Scholar

[9]

J. Milnor, Geometry and dynamics of quadratic rational maps, with an appendix by the author and Lei Tan, Experiment. Math., 2 (1993), 37-83. doi: 10.1080/10586458.1993.10504267. Google Scholar

[10]

M. Rees, Views of parameter space: Topographer and Resident, Astérisque, 288 (2003), 1-418. Google Scholar

Figure 1.  The space $\mathscr X$ (on the left) is the complement in $\mathbb{C}^2$ of the five solid black lines. The dashed diagonal line is $\mathscr E$. The space $\mathscr Q$ (on the right) is the complement in $\mathbb{C}^2$ of the three solid black lines intersecting at $(1, 0)$. The line $\mathscr L$ is the image of $\mathscr K_1$ and $\mathscr K_2$ under the map $\mathfrak{s}$; it is tangent to the dashed conic $\mathfrak{s}(\mathscr E)$ at $q_0$.
Figure 2.  The space $\mathscr{W}_f$ is the complement of the black curves in $\mathbb{C}^2$ (including the axes). The space $\mathscr{V}_f\subseteq \mathscr{W}_f$ is represented by the grey diagonal line.
[1]

Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433

[2]

Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems & Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039

[3]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[4]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[5]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

[6]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[7]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[8]

H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403

[9]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[10]

Kathy Horadam, Russell East. Partitioning CCZ classes into EA classes. Advances in Mathematics of Communications, 2012, 6 (1) : 95-106. doi: 10.3934/amc.2012.6.95

[11]

John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83

[12]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[13]

Stefan Siegmund, Petr Stehlík. Preface: Special issue on dynamical systems on graphs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : ⅰ-ⅲ. doi: 10.3934/dcdsb.201805i

[14]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[15]

Fred C. Pinto. Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 117-136. doi: 10.3934/dcds.1999.5.117

[16]

Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial & Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385

[17]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[18]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[19]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[20]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (10)
  • HTML views (129)
  • Cited by (0)

Other articles
by authors

[Back to Top]