July & October  2014, 8(3&4): 549-576. doi: 10.3934/jmd.2014.8.549

Center Lyapunov exponents in partially hyperbolic dynamics

1. 

Department of Mathematical Sciences, Binghamton University, P. O. Box 6000, Binghamton, NY 13902, United States

2. 

Departamento de Matemática, ICMC-USP São Carlos, Caixa Postal 668, 13560-970 São Carlos-SP, Brazil

Received  October 2013 Revised  June 2014 Published  April 2015

In this survey, we discuss the problem of removing zero Lyapunov exponents of smooth invariant measures along the center direction of a partially hyperbolic diffeomorphism and various related questions. In particular, we discuss disintegration of a smooth invariant measure along the center foliation. We also simplify the proofs of some known results and include new questions and conjectures.
Citation: Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549
References:
[1]

F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms,, Israel J. Math., 183 (2011), 1. doi: 10.1007/s11856-011-0041-5. Google Scholar

[2]

J. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems,, Proc. Amer. Math. Soc., 131 (2003), 1303. doi: 10.1090/S0002-9939-02-06857-0. Google Scholar

[3]

J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding,, Invent. Math., 140 (2000), 351. doi: 10.1007/s002220000057. Google Scholar

[4]

A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications,, Invent. Math., 181 (2010), 115. doi: 10.1007/s00222-010-0243-1. Google Scholar

[5]

A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps,, preprint, (2008). Google Scholar

[6]

A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows,, preprint, (2011). Google Scholar

[7]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents,, Ergodic Theory Dynam. Systems, 23 (2003), 1655. doi: 10.1017/S0143385702001773. Google Scholar

[8]

J. Bochi, Genericity of zero Lyapunov exponents,, Ergodic Theory Dynam. Systems, 22 (2002), 1667. doi: 10.1017/S0143385702001165. Google Scholar

[9]

J. Bochi, Ch. Bonatti and L. J. Díaz, Robust vanishing of all Lyapunov exponents for iterated function systems,, Mathematische Zeitschrift, 276 (2014), 469. doi: 10.1007/s00209-013-1209-y. Google Scholar

[10]

C. Bonatti, L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures with large support,, Nonlinearity, 23 (2010), 687. doi: 10.1088/0951-7715/23/3/015. Google Scholar

[11]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005). Google Scholar

[12]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541. doi: 10.3934/jmd.2008.2.541. Google Scholar

[13]

K. Burns and A. Wilkinson, Stable ergodicity of skew products,, Ann. Sci. École Norm. Sup. (4), 32 (1999), 859. doi: 10.1016/S0012-9593(00)87721-6. Google Scholar

[14]

C. Q. Cheng and Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings,, Celestial Mech. Dynam. Astronom., 47 (): 275. doi: 10.1007/BF00053456. Google Scholar

[15]

L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes,, Ergodic Theory Dynam. Systems, 29 (2009), 1479. doi: 10.1017/S0143385708000849. Google Scholar

[16]

D. Dolgopyat, On dynamics of mostly contracting diffeomorphisms,, Comm. Math. Phys., 213 (2000), 181. doi: 10.1007/s002200000238. Google Scholar

[17]

D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems,, Invent. Math., 155 (2004), 389. doi: 10.1007/s00222-003-0324-5. Google Scholar

[18]

A. Gogolev, Smooth conjugacy in hyperbolic dynamics,, preprint., (). Google Scholar

[19]

A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example,, Israel J. Math., 187 (2012), 493. doi: 10.1007/s11856-011-0088-3. Google Scholar

[20]

A. S. Gorodetskiĭ, Regularity of central leaves of partially hyperbolic sets and applications,, Izv. Math., 70 (2006), 1093. doi: 10.1070/IM2006v070n06ABEH002340. Google Scholar

[21]

A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some new robust properties of invariant sets and attractors of dynamical systems,, Funktsional. Anal. i Prilozhen., 33 (1999), 16. doi: 10.1007/BF02465190. Google Scholar

[22]

A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some properties of skew products over a horseshoe and a solenoid,, Proc. Steklov Inst. Math., 231 (2000), 90. Google Scholar

[23]

A. S. Gorodetskiĭ, Yu. S. Il'yashenko, V. A. Kleptsyn and M. B. Nal'skiĭ, Nonremovability of zero Lyapunov exponents,, (Russian) Funktsional. Anal. i Prilozhen., 39 (2005), 27. doi: 10.1007/s10688-005-0014-8. Google Scholar

[24]

A. Hammerlindl, Leaf conjugacies on the torus,, Ergodic Theory Dynam. Systems, 33 (2013), 896. doi: 10.1017/etds.2012.171. Google Scholar

[25]

B. Hasselblatt and Ya. Pesin, Partially hyperbolic dynamical systems,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 1. doi: 10.1016/S1874-575X(06)80026-3. Google Scholar

[26]

M. Hirayama and Ya. Pesin, Non-absolutely continuous foliations,, Israel J. Math., 160 (2007), 173. doi: 10.1007/s11856-007-0060-4. Google Scholar

[27]

M. Herman, Stabilité topologique des systèmes dynamiques conservatifs,, preprint, (1990). Google Scholar

[28]

A. J. Homburg, Atomic disintegrations for partially hyperbolic diffeomorphisms,, preprint, (2010). Google Scholar

[29]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, With a supplementary chapter by Katok and L. Mendoza, (1995). doi: 10.1017/CBO9780511809187. Google Scholar

[30]

V. Kleptsyn and M. Nal'skiĭ, Robustness of nonhyperbolic measures for $C^1$-diffeomorphisms,, Funct. Anal. Appl., 41 (2007), 271. doi: 10.1007/s10688-007-0025-8. Google Scholar

[31]

F. Ledrappier, Positivity of the exponent for stationary sequences of matrices,, in Lyapunov Exponents (Bremen, (1984), 56. doi: 10.1007/BFb0076833. Google Scholar

[32]

C. Liang, W. Sun and J. Yang, Some results on perturbations to Lyapunov exponents,, Discrete Contin. Dyn. Syst., 32 (2012), 4287. doi: 10.3934/dcds.2012.32.4287. Google Scholar

[33]

R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II,, Commun. Math. Phys., 109 (1987), 369. doi: 10.1007/BF01206141. Google Scholar

[34]

J. Milnor, Fubini foiled: Katok's paradoxical example in measure theory,, Math. Intelligencer, 19 (1997), 30. doi: 10.1007/BF03024428. Google Scholar

[35]

J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. III,, Comm. Math. Phys., 112 (1987), 317. doi: 10.1007/BF01217815. Google Scholar

[36]

F. Micena and A. Tahzibi, Regularity of foliations and Lyapunov exponents for partially hyperbolic dynamics on 3-torus,, Nonlinearity, 26 (2013), 1071. doi: 10.1088/0951-7715/26/4/1071. Google Scholar

[37]

M. Nal'skiĭ, Non-hyporbolic invariant measures on the maximal attractor (in Russian),, , (). Google Scholar

[38]

Ya. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar

[39]

Ya. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity,, Zurich Lectures in Advanced Mathematics, (2004). doi: 10.4171/003. Google Scholar

[40]

Ya. Pesin, Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents,, Regul. Chaotic Dyn., 12 (2007), 476. doi: 10.1134/S1560354707050024. Google Scholar

[41]

G. Ponce and A. Tahzibi, Central Lyapunov exponent of partially hyperbolic diffeomorphisms of $\mathbbT^3$,, Proc. Amer. Math. Soc., 142 (2014), 3193. doi: 10.1090/S0002-9939-2014-12063-6. Google Scholar

[42]

G. Ponce, A. Tahzibi and R. Varão, Minimal yet measurable foliations,, J. Mod. Dyn., 8 (2014), 93. doi: 10.3934/jmd.2014.8.93. Google Scholar

[43]

F. Rodriguez Hertz, J. Rodriguez Hertz and R. Ures, Partially Hyperbolic Dynamics,, IMPA Mathematical Publications, (2011). Google Scholar

[44]

D. Ruelle, Perturbation theory for Lyapunov exponents of a toral map: Extension of a result of Shub and Wilkinson,, Israel J. Math., 134 (2003), 345. doi: 10.1007/BF02787412. Google Scholar

[45]

D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations,, Comm. Math. Phys., 219 (2001), 481. doi: 10.1007/s002200100420. Google Scholar

[46]

R. Saghin and Zh. Xia, Geometric expansion, Lyapunov exponents and foliations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689. doi: 10.1016/j.anihpc.2008.07.001. Google Scholar

[47]

M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents,, Invent. Math., 139 (2000), 495. doi: 10.1007/s002229900035. Google Scholar

[48]

K. Sigmund, On the connectedness of ergodic systems,, Manuscripta Math., 22 (1977), 27. doi: 10.1007/BF01182064. Google Scholar

[49]

R. Varão, Center foliation: Absolute continuity, disintegration and rigidity,, Ergod. Th. Dynam. Syst., (2014). doi: 10.1017/etds.2014.53. Google Scholar

[50]

Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms,, Ergod. Th. Dynam. Syst., 12 (1992), 621. doi: 10.1017/S0143385700006969. Google Scholar

[51]

J.-C. Yoccoz, Travaux de Herman sur les tores invariants,, Séminaire Bourbaki, (1992), 311. Google Scholar

show all references

References:
[1]

F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms,, Israel J. Math., 183 (2011), 1. doi: 10.1007/s11856-011-0041-5. Google Scholar

[2]

J. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems,, Proc. Amer. Math. Soc., 131 (2003), 1303. doi: 10.1090/S0002-9939-02-06857-0. Google Scholar

[3]

J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding,, Invent. Math., 140 (2000), 351. doi: 10.1007/s002220000057. Google Scholar

[4]

A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications,, Invent. Math., 181 (2010), 115. doi: 10.1007/s00222-010-0243-1. Google Scholar

[5]

A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps,, preprint, (2008). Google Scholar

[6]

A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows,, preprint, (2011). Google Scholar

[7]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents,, Ergodic Theory Dynam. Systems, 23 (2003), 1655. doi: 10.1017/S0143385702001773. Google Scholar

[8]

J. Bochi, Genericity of zero Lyapunov exponents,, Ergodic Theory Dynam. Systems, 22 (2002), 1667. doi: 10.1017/S0143385702001165. Google Scholar

[9]

J. Bochi, Ch. Bonatti and L. J. Díaz, Robust vanishing of all Lyapunov exponents for iterated function systems,, Mathematische Zeitschrift, 276 (2014), 469. doi: 10.1007/s00209-013-1209-y. Google Scholar

[10]

C. Bonatti, L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures with large support,, Nonlinearity, 23 (2010), 687. doi: 10.1088/0951-7715/23/3/015. Google Scholar

[11]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005). Google Scholar

[12]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541. doi: 10.3934/jmd.2008.2.541. Google Scholar

[13]

K. Burns and A. Wilkinson, Stable ergodicity of skew products,, Ann. Sci. École Norm. Sup. (4), 32 (1999), 859. doi: 10.1016/S0012-9593(00)87721-6. Google Scholar

[14]

C. Q. Cheng and Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings,, Celestial Mech. Dynam. Astronom., 47 (): 275. doi: 10.1007/BF00053456. Google Scholar

[15]

L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes,, Ergodic Theory Dynam. Systems, 29 (2009), 1479. doi: 10.1017/S0143385708000849. Google Scholar

[16]

D. Dolgopyat, On dynamics of mostly contracting diffeomorphisms,, Comm. Math. Phys., 213 (2000), 181. doi: 10.1007/s002200000238. Google Scholar

[17]

D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems,, Invent. Math., 155 (2004), 389. doi: 10.1007/s00222-003-0324-5. Google Scholar

[18]

A. Gogolev, Smooth conjugacy in hyperbolic dynamics,, preprint., (). Google Scholar

[19]

A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example,, Israel J. Math., 187 (2012), 493. doi: 10.1007/s11856-011-0088-3. Google Scholar

[20]

A. S. Gorodetskiĭ, Regularity of central leaves of partially hyperbolic sets and applications,, Izv. Math., 70 (2006), 1093. doi: 10.1070/IM2006v070n06ABEH002340. Google Scholar

[21]

A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some new robust properties of invariant sets and attractors of dynamical systems,, Funktsional. Anal. i Prilozhen., 33 (1999), 16. doi: 10.1007/BF02465190. Google Scholar

[22]

A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some properties of skew products over a horseshoe and a solenoid,, Proc. Steklov Inst. Math., 231 (2000), 90. Google Scholar

[23]

A. S. Gorodetskiĭ, Yu. S. Il'yashenko, V. A. Kleptsyn and M. B. Nal'skiĭ, Nonremovability of zero Lyapunov exponents,, (Russian) Funktsional. Anal. i Prilozhen., 39 (2005), 27. doi: 10.1007/s10688-005-0014-8. Google Scholar

[24]

A. Hammerlindl, Leaf conjugacies on the torus,, Ergodic Theory Dynam. Systems, 33 (2013), 896. doi: 10.1017/etds.2012.171. Google Scholar

[25]

B. Hasselblatt and Ya. Pesin, Partially hyperbolic dynamical systems,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 1. doi: 10.1016/S1874-575X(06)80026-3. Google Scholar

[26]

M. Hirayama and Ya. Pesin, Non-absolutely continuous foliations,, Israel J. Math., 160 (2007), 173. doi: 10.1007/s11856-007-0060-4. Google Scholar

[27]

M. Herman, Stabilité topologique des systèmes dynamiques conservatifs,, preprint, (1990). Google Scholar

[28]

A. J. Homburg, Atomic disintegrations for partially hyperbolic diffeomorphisms,, preprint, (2010). Google Scholar

[29]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, With a supplementary chapter by Katok and L. Mendoza, (1995). doi: 10.1017/CBO9780511809187. Google Scholar

[30]

V. Kleptsyn and M. Nal'skiĭ, Robustness of nonhyperbolic measures for $C^1$-diffeomorphisms,, Funct. Anal. Appl., 41 (2007), 271. doi: 10.1007/s10688-007-0025-8. Google Scholar

[31]

F. Ledrappier, Positivity of the exponent for stationary sequences of matrices,, in Lyapunov Exponents (Bremen, (1984), 56. doi: 10.1007/BFb0076833. Google Scholar

[32]

C. Liang, W. Sun and J. Yang, Some results on perturbations to Lyapunov exponents,, Discrete Contin. Dyn. Syst., 32 (2012), 4287. doi: 10.3934/dcds.2012.32.4287. Google Scholar

[33]

R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II,, Commun. Math. Phys., 109 (1987), 369. doi: 10.1007/BF01206141. Google Scholar

[34]

J. Milnor, Fubini foiled: Katok's paradoxical example in measure theory,, Math. Intelligencer, 19 (1997), 30. doi: 10.1007/BF03024428. Google Scholar

[35]

J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. III,, Comm. Math. Phys., 112 (1987), 317. doi: 10.1007/BF01217815. Google Scholar

[36]

F. Micena and A. Tahzibi, Regularity of foliations and Lyapunov exponents for partially hyperbolic dynamics on 3-torus,, Nonlinearity, 26 (2013), 1071. doi: 10.1088/0951-7715/26/4/1071. Google Scholar

[37]

M. Nal'skiĭ, Non-hyporbolic invariant measures on the maximal attractor (in Russian),, , (). Google Scholar

[38]

Ya. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar

[39]

Ya. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity,, Zurich Lectures in Advanced Mathematics, (2004). doi: 10.4171/003. Google Scholar

[40]

Ya. Pesin, Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents,, Regul. Chaotic Dyn., 12 (2007), 476. doi: 10.1134/S1560354707050024. Google Scholar

[41]

G. Ponce and A. Tahzibi, Central Lyapunov exponent of partially hyperbolic diffeomorphisms of $\mathbbT^3$,, Proc. Amer. Math. Soc., 142 (2014), 3193. doi: 10.1090/S0002-9939-2014-12063-6. Google Scholar

[42]

G. Ponce, A. Tahzibi and R. Varão, Minimal yet measurable foliations,, J. Mod. Dyn., 8 (2014), 93. doi: 10.3934/jmd.2014.8.93. Google Scholar

[43]

F. Rodriguez Hertz, J. Rodriguez Hertz and R. Ures, Partially Hyperbolic Dynamics,, IMPA Mathematical Publications, (2011). Google Scholar

[44]

D. Ruelle, Perturbation theory for Lyapunov exponents of a toral map: Extension of a result of Shub and Wilkinson,, Israel J. Math., 134 (2003), 345. doi: 10.1007/BF02787412. Google Scholar

[45]

D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations,, Comm. Math. Phys., 219 (2001), 481. doi: 10.1007/s002200100420. Google Scholar

[46]

R. Saghin and Zh. Xia, Geometric expansion, Lyapunov exponents and foliations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689. doi: 10.1016/j.anihpc.2008.07.001. Google Scholar

[47]

M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents,, Invent. Math., 139 (2000), 495. doi: 10.1007/s002229900035. Google Scholar

[48]

K. Sigmund, On the connectedness of ergodic systems,, Manuscripta Math., 22 (1977), 27. doi: 10.1007/BF01182064. Google Scholar

[49]

R. Varão, Center foliation: Absolute continuity, disintegration and rigidity,, Ergod. Th. Dynam. Syst., (2014). doi: 10.1017/etds.2014.53. Google Scholar

[50]

Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms,, Ergod. Th. Dynam. Syst., 12 (1992), 621. doi: 10.1017/S0143385700006969. Google Scholar

[51]

J.-C. Yoccoz, Travaux de Herman sur les tores invariants,, Séminaire Bourbaki, (1992), 311. Google Scholar

[1]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[2]

Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747

[3]

Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75

[4]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[5]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

[6]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[7]

David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253

[8]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[9]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

[10]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[11]

Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure & Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161

[12]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[13]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[14]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[15]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[16]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[17]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[18]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[19]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[20]

Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]