January  2014, 8(1): 25-59. doi: 10.3934/jmd.2014.8.25

Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows

1. 

School of Mathematics, University of Bristol, Bristol BS8 1TW

2. 

Département de mathématique, UMR 8628 CNRS, Bât. 425, Université Paris-Sud, 91405 ORSAY Cedex, France

Received  June 2013 Published  July 2014

In this paper, we study the distribution of integral points on parametric families of affine homogeneous varieties. By the work of Borel and Harish-Chandra, the set of integral points on each such variety consists of finitely many orbits of arithmetic groups, and we establish an asymptotic formula (on average) for the number of the orbits indexed by their Siegel weights. In particular, we deduce asymptotic formulas for the number of inequivalent integral representations by decomposable forms and by norm forms in division algebras, and for the weighted number of equivalence classes of integral points on sections of quadrics. Our arguments use the exponential mixing property of diagonal flows on homogeneous spaces.
Citation: Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25
References:
[1]

T. Apostol, Introduction to Analytic Number Theory,, Undergrad. Texts Math., (1976). Google Scholar

[2]

M. Babillot, Points entiers et groupes discrets: De l'analyse aux systèmes dynamiques,, in Rigidité, (2002), 1. Google Scholar

[3]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T),, New Math. Mono., (2008). doi: 10.1017/CBO9780511542749. Google Scholar

[4]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties,, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889. doi: 10.5802/aif.2738. Google Scholar

[5]

A. Borel, Ensembles fundamentaux pour les groupes arithmétiques,, in Colloque sur la Théorie des Groupes Algébriques (Bruxelles, (1962), 23. Google Scholar

[6]

A. Borel, Introduction aux Groupes Arithmétiques,, Publications de l'Institut de Mathématique de l'Université de Strasbourg, (1341). Google Scholar

[7]

A. Borel, Linear Algebraic Groups,, 2nd edition, (1991). doi: 10.1007/978-1-4612-0941-6. Google Scholar

[8]

A. Borel, Reduction theory for arithmetic groups,, in Algebraic Groups and Discontinuous Subgroups (eds. A. Borel and G. D. Mostow) (Proc. Sympos. Pure Math. Boulder, (1965), 20. Google Scholar

[9]

A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups,, Ann. of Math. (2), 75 (1962), 485. doi: 10.2307/1970210. Google Scholar

[10]

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces,, Mathematics: Theory & Applications, (2006). Google Scholar

[11]

M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups,, Invent. Math., 119 (1995), 37. doi: 10.1007/BF01245174. Google Scholar

[12]

L. Clozel, Démonstration de la conjecture $\tau$,, Invent. Math., 151 (2003), 297. doi: 10.1007/s00222-002-0253-8. Google Scholar

[13]

H. Cohn, A Second Course in Number Theory,, Wiley, (1962). Google Scholar

[14]

J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms,, Compositio Math., 145 (2009), 309. doi: 10.1112/S0010437X0800376X. Google Scholar

[15]

M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples,, in Analyse Harmonique sur les Groupes de Lie (Sém. Nancy-Strasbourg 1976-1978), (1979), 1976. Google Scholar

[16]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,, Duke Math. J., 71 (1993), 143. doi: 10.1215/S0012-7094-93-07107-4. Google Scholar

[17]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181. doi: 10.1215/S0012-7094-93-07108-6. Google Scholar

[18]

A. Eskin, S. Mozes and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties,, Ann. of Math. (2), 143 (1996), 253. doi: 10.2307/2118644. Google Scholar

[19]

A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows,, Duke Math. J., 135 (2006), 481. doi: 10.1215/S0012-7094-06-13533-0. Google Scholar

[20]

A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula,, Internat. Math. Res. Notices, 5 (1991), 65. doi: 10.1155/S1073792891000090. Google Scholar

[21]

W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: A problem of Linnik,, Compositio Math., 136 (2003), 323. doi: 10.1023/A:1023256605535. Google Scholar

[22]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods,, Geom. Funct. Anal., 21 (2011), 319. doi: 10.1007/s00039-011-0113-z. Google Scholar

[23]

K. Györy, On the distribution of solutions of decomposable form equations,, in Number Theory in Progress, (1997), 237. Google Scholar

[24]

M. Hirsch, Differential Topology,, Grad. Texts Math., (1976). Google Scholar

[25]

D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $ PSL(2,\RR)$,, J. Euro. Math. Soc., 11 (2009), 283. doi: 10.4171/JEMS/151. Google Scholar

[26]

T. Kimura, Introduction to Prehomogeneous Vector Spaces,, Transl. Math. Mono., (2003). Google Scholar

[27]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, in Sinaĭ's Moscow Seminar on Dynamical Systems, (1996), 141. Google Scholar

[28]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces,, Invent. Math., 138 (1999), 451. doi: 10.1007/s002220050350. Google Scholar

[29]

H. Koch, Number Theory: Algebraic Numbers and Functions,, Grad. Stud. Math., (2000). Google Scholar

[30]

S. Lang, Algebraic Number Theory,, Second edition, (1994). doi: 10.1007/978-1-4612-0853-2. Google Scholar

[31]

D. N. Lehmer, Asymptotic evaluation of certain totient sums,, Amer. J. Math., 22 (1900), 293. doi: 10.2307/2369728. Google Scholar

[32]

A. Nevo, Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups,, Erg. Theo. Dyn. Syst., 25 (2005), 1257. doi: 10.1017/S0143385704000951. Google Scholar

[33]

H. Oh, Hardy-Littlewood system and representations of integers by an invariant polynomial,, Geom. Funct. Anal., 14 (2004), 791. doi: 10.1007/s00039-004-0475-6. Google Scholar

[34]

H. Oh, Orbital counting via mixing and unipotent flows,, in Homogeneous Flows, (2010), 339. Google Scholar

[35]

E. Peyre, Obstructions au principe de Hasse et à l'approximation faible,, Séminaire Bourbaki, 299 (2005), 165. Google Scholar

[36]

J. Parkkonen and F. Paulin, Équidistribution, comptage et approximation par irrationnels quadratiques,, J. Mod. Dyn., 6 (2012), 1. doi: 10.3934/jmd.2012.6.1. Google Scholar

[37]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature,, preprint, (). Google Scholar

[38]

J. Parkkonen and F. Paulin, On the arithmetic of crossratios and generalised Mertens' formulas,, to appear in Ann. Fac. Scien. Toulouse, (2013). Google Scholar

[39]

V. Platonov and A. Rapinchuck, Algebraic Groups and Number Theory,, Pure and Applied Mathematics, (1994). Google Scholar

[40]

M. Raghunathan, Discrete Subgroups of Lie Groups,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (1972). Google Scholar

[41]

I. Reiner, Maximal Orders,, Academic Press, (1975). Google Scholar

[42]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719. doi: 10.1002/cpa.3160340602. Google Scholar

[43]

M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces,, Ann. of Math. (2), 100 (1974), 131. doi: 10.2307/1970844. Google Scholar

[44]

W. M. Schmidt, Norm form equation,, Ann. of Math. (2), 96 (1972), 526. doi: 10.2307/1970824. Google Scholar

[45]

J.-P. Serre, Cours d'arithmetique,, Collection SUP:, (1970). Google Scholar

[46]

C. L. Siegel, On the theory of indefinite quadratic forms,, Ann. of Math. (2), 45 (1944), 577. doi: 10.2307/1969191. Google Scholar

[47]

C. L. Siegel, The average measure of quadratic forms with given determinant and signature,, Ann. of Math. (2), 45 (1944), 667. doi: 10.2307/1969296. Google Scholar

[48]

T. A. Springer, Linear algebraic groups,, in Algebraic Geometry IV (eds. A. Parshin and I. Shavarevich), (1994), 1. doi: 10.1007/978-3-662-03073-8. Google Scholar

[49]

J. L. Thunder, Decomposable form inequalities,, Ann. of Math. (2), 153 (2001), 767. doi: 10.2307/2661368. Google Scholar

[50]

V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants,, Transl. Math. Mono., (1998). Google Scholar

[51]

A. Weil, L'intégration dans les groupes topologiques et ses applications,, Hermann, (1965). Google Scholar

show all references

References:
[1]

T. Apostol, Introduction to Analytic Number Theory,, Undergrad. Texts Math., (1976). Google Scholar

[2]

M. Babillot, Points entiers et groupes discrets: De l'analyse aux systèmes dynamiques,, in Rigidité, (2002), 1. Google Scholar

[3]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T),, New Math. Mono., (2008). doi: 10.1017/CBO9780511542749. Google Scholar

[4]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties,, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889. doi: 10.5802/aif.2738. Google Scholar

[5]

A. Borel, Ensembles fundamentaux pour les groupes arithmétiques,, in Colloque sur la Théorie des Groupes Algébriques (Bruxelles, (1962), 23. Google Scholar

[6]

A. Borel, Introduction aux Groupes Arithmétiques,, Publications de l'Institut de Mathématique de l'Université de Strasbourg, (1341). Google Scholar

[7]

A. Borel, Linear Algebraic Groups,, 2nd edition, (1991). doi: 10.1007/978-1-4612-0941-6. Google Scholar

[8]

A. Borel, Reduction theory for arithmetic groups,, in Algebraic Groups and Discontinuous Subgroups (eds. A. Borel and G. D. Mostow) (Proc. Sympos. Pure Math. Boulder, (1965), 20. Google Scholar

[9]

A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups,, Ann. of Math. (2), 75 (1962), 485. doi: 10.2307/1970210. Google Scholar

[10]

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces,, Mathematics: Theory & Applications, (2006). Google Scholar

[11]

M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups,, Invent. Math., 119 (1995), 37. doi: 10.1007/BF01245174. Google Scholar

[12]

L. Clozel, Démonstration de la conjecture $\tau$,, Invent. Math., 151 (2003), 297. doi: 10.1007/s00222-002-0253-8. Google Scholar

[13]

H. Cohn, A Second Course in Number Theory,, Wiley, (1962). Google Scholar

[14]

J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms,, Compositio Math., 145 (2009), 309. doi: 10.1112/S0010437X0800376X. Google Scholar

[15]

M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples,, in Analyse Harmonique sur les Groupes de Lie (Sém. Nancy-Strasbourg 1976-1978), (1979), 1976. Google Scholar

[16]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,, Duke Math. J., 71 (1993), 143. doi: 10.1215/S0012-7094-93-07107-4. Google Scholar

[17]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181. doi: 10.1215/S0012-7094-93-07108-6. Google Scholar

[18]

A. Eskin, S. Mozes and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties,, Ann. of Math. (2), 143 (1996), 253. doi: 10.2307/2118644. Google Scholar

[19]

A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows,, Duke Math. J., 135 (2006), 481. doi: 10.1215/S0012-7094-06-13533-0. Google Scholar

[20]

A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula,, Internat. Math. Res. Notices, 5 (1991), 65. doi: 10.1155/S1073792891000090. Google Scholar

[21]

W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: A problem of Linnik,, Compositio Math., 136 (2003), 323. doi: 10.1023/A:1023256605535. Google Scholar

[22]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods,, Geom. Funct. Anal., 21 (2011), 319. doi: 10.1007/s00039-011-0113-z. Google Scholar

[23]

K. Györy, On the distribution of solutions of decomposable form equations,, in Number Theory in Progress, (1997), 237. Google Scholar

[24]

M. Hirsch, Differential Topology,, Grad. Texts Math., (1976). Google Scholar

[25]

D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $ PSL(2,\RR)$,, J. Euro. Math. Soc., 11 (2009), 283. doi: 10.4171/JEMS/151. Google Scholar

[26]

T. Kimura, Introduction to Prehomogeneous Vector Spaces,, Transl. Math. Mono., (2003). Google Scholar

[27]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, in Sinaĭ's Moscow Seminar on Dynamical Systems, (1996), 141. Google Scholar

[28]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces,, Invent. Math., 138 (1999), 451. doi: 10.1007/s002220050350. Google Scholar

[29]

H. Koch, Number Theory: Algebraic Numbers and Functions,, Grad. Stud. Math., (2000). Google Scholar

[30]

S. Lang, Algebraic Number Theory,, Second edition, (1994). doi: 10.1007/978-1-4612-0853-2. Google Scholar

[31]

D. N. Lehmer, Asymptotic evaluation of certain totient sums,, Amer. J. Math., 22 (1900), 293. doi: 10.2307/2369728. Google Scholar

[32]

A. Nevo, Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups,, Erg. Theo. Dyn. Syst., 25 (2005), 1257. doi: 10.1017/S0143385704000951. Google Scholar

[33]

H. Oh, Hardy-Littlewood system and representations of integers by an invariant polynomial,, Geom. Funct. Anal., 14 (2004), 791. doi: 10.1007/s00039-004-0475-6. Google Scholar

[34]

H. Oh, Orbital counting via mixing and unipotent flows,, in Homogeneous Flows, (2010), 339. Google Scholar

[35]

E. Peyre, Obstructions au principe de Hasse et à l'approximation faible,, Séminaire Bourbaki, 299 (2005), 165. Google Scholar

[36]

J. Parkkonen and F. Paulin, Équidistribution, comptage et approximation par irrationnels quadratiques,, J. Mod. Dyn., 6 (2012), 1. doi: 10.3934/jmd.2012.6.1. Google Scholar

[37]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature,, preprint, (). Google Scholar

[38]

J. Parkkonen and F. Paulin, On the arithmetic of crossratios and generalised Mertens' formulas,, to appear in Ann. Fac. Scien. Toulouse, (2013). Google Scholar

[39]

V. Platonov and A. Rapinchuck, Algebraic Groups and Number Theory,, Pure and Applied Mathematics, (1994). Google Scholar

[40]

M. Raghunathan, Discrete Subgroups of Lie Groups,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (1972). Google Scholar

[41]

I. Reiner, Maximal Orders,, Academic Press, (1975). Google Scholar

[42]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719. doi: 10.1002/cpa.3160340602. Google Scholar

[43]

M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces,, Ann. of Math. (2), 100 (1974), 131. doi: 10.2307/1970844. Google Scholar

[44]

W. M. Schmidt, Norm form equation,, Ann. of Math. (2), 96 (1972), 526. doi: 10.2307/1970824. Google Scholar

[45]

J.-P. Serre, Cours d'arithmetique,, Collection SUP:, (1970). Google Scholar

[46]

C. L. Siegel, On the theory of indefinite quadratic forms,, Ann. of Math. (2), 45 (1944), 577. doi: 10.2307/1969191. Google Scholar

[47]

C. L. Siegel, The average measure of quadratic forms with given determinant and signature,, Ann. of Math. (2), 45 (1944), 667. doi: 10.2307/1969296. Google Scholar

[48]

T. A. Springer, Linear algebraic groups,, in Algebraic Geometry IV (eds. A. Parshin and I. Shavarevich), (1994), 1. doi: 10.1007/978-3-662-03073-8. Google Scholar

[49]

J. L. Thunder, Decomposable form inequalities,, Ann. of Math. (2), 153 (2001), 767. doi: 10.2307/2661368. Google Scholar

[50]

V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants,, Transl. Math. Mono., (1998). Google Scholar

[51]

A. Weil, L'intégration dans les groupes topologiques et ses applications,, Hermann, (1965). Google Scholar

[1]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[2]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[3]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[4]

Abbas Bahri. Recent results in contact form geometry. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[5]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[6]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[7]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[8]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[9]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[10]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[11]

Tony Lyons. Geophysical internal equatorial waves of extreme form. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4471-4486. doi: 10.3934/dcds.2019183

[12]

Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191

[13]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

[14]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[15]

Sigve Hovda. Closed-form expression for the inverse of a class of tridiagonal matrices. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 437-445. doi: 10.3934/naco.2016019

[16]

M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819

[17]

David Maxwell. Kozlov-Maz'ya iteration as a form of Landweber iteration. Inverse Problems & Imaging, 2014, 8 (2) : 537-560. doi: 10.3934/ipi.2014.8.537

[18]

Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060

[19]

Luciano Viana Felix, Marcelo Firer. Canonical- systematic form for codes in hierarchical poset metrics. Advances in Mathematics of Communications, 2012, 6 (3) : 315-328. doi: 10.3934/amc.2012.6.315

[20]

Dian Palagachev, Lubomira G. Softova. Quasilinear divergence form parabolic equations in Reifenberg flat domains. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1397-1410. doi: 10.3934/dcds.2011.31.1397

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]