April  2012, 6(2): 251-273. doi: 10.3934/jmd.2012.6.251

Time-changes of horocycle flows

1. 

Department of Mathematics, University of Maryland, College Park, MD 20742-4015

2. 

School of Mathematics, University of Bristol, University Walk, Clifton, BS8 1TW,Bristol, United Kingdom

Received  February 2012 Published  August 2012

We consider smooth time-changes of the classical horocycle flows on the unit tangent bundle of a compact hyperbolic surface and prove sharp bounds on the rate of equidistribution and the rate of mixing. We then derive results on the spectrum of smooth time-changes and show that the spectrum is absolutely continuous with respect to the Lebesgue measure on the real line and that the maximal spectral type is equivalent to Lebesgue.
Citation: Giovanni Forni, Corinna Ulcigrai. Time-changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 251-273. doi: 10.3934/jmd.2012.6.251
References:
[1]

V. Bargmann, Irreducible unitary representations of the Lorentz group,, Ann. of Math. (2), 48 (1947), 568. doi: 10.2307/1969129. Google Scholar

[2]

A. Bufetov and G. Forni, Limit theorems for horocycle flows,, preprint, (2011), 1. Google Scholar

[3]

M. Burger, Horocycle flow on geometrically finite surfaces,, Duke Math. J., 61 (1990), 779. doi: 10.1215/S0012-7094-90-06129-0. Google Scholar

[4]

S. G. Dani, Invariant measures and minimal sets of horospherical flows,, Invent. Math., 64 (1981), 357. doi: 10.1007/BF01389173. Google Scholar

[5]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows,, Duke Math. J., 119 (2003), 465. doi: 10.1215/S0012-7094-03-11932-8. Google Scholar

[6]

H. Furstenberg, The unique ergodicity of the horocycle flow,, in, 318 (1973), 95. Google Scholar

[7]

I. M. Gel'fand and S. V. Fomin, Unitary representations of Lie groups and geodesic flows on surfaces of constant negative curvature, (Russian),, Dokl. Akad. Nauk SSSR (N.S.), 76 (1951), 771. Google Scholar

[8]

I. M. Gelfand and M. Neumark, Unitary representations of the Lorentz group,, Acad. Sci. USSR. J. Phys., 10 (1946), 93. Google Scholar

[9]

B. M. Gurevič, The entropy of horocycle flows, (Russian),, Dokl. Akad. Nauk SSSR, 136 (1961), 768. Google Scholar

[10]

G. A. Hedlund, Fuchsian groups and transitive horocycles,, Duke Math. J., 2 (1936), 530. doi: 10.1215/S0012-7094-36-00246-6. Google Scholar

[11]

D. A. Hejhal, On the uniform equidistribution of long closed horocycles. Loo-Keng Hua: A great mathematician of the twentieth century,, Asian J. Math., 4 (2000), 839. Google Scholar

[12]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory,, in, (2006), 649. Google Scholar

[13]

A. G. Kušnirenko, Spectral properties of certain dynamical systems with polynomial dispersal,, Vestnik Moskovskogo Universiteta. Ser. I Matematika Meh., 29 (1974), 101. Google Scholar

[14]

B. Marcus, Unique ergodicity of the horocycle flow: Variable negative curvature case,, Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 21 (1975), 133. Google Scholar

[15]

_____, Ergodic properties of horocycle flows for surfaces of negative curvature,, Ann. of Math. (2), 105 (1977), 81. Google Scholar

[16]

C. C. Moore, Exponential decay of correlation coefficients for geodesic flows,, in, 6 (1987), 163. Google Scholar

[17]

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators,, Comm. Math. Phys., 78 (): 391. doi: 10.1007/BF01942331. Google Scholar

[18]

O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, (Russian),, Uspekhi Mat. Nauk (N.S.), 8 (1953), 125. Google Scholar

[19]

M. Ratner, Factors of horocycle flows,, Ergodic Theory Dynam. Systems, 2 (1982), 465. doi: 10.1017/S0143385700001723. Google Scholar

[20]

_____, Rigidity of horocycle flows,, Ann. of Math. (2), 115 (1982), 597. Google Scholar

[21]

_____, Horocycle flows, joinings and rigidity of products,, Ann. of Math. (2), 118 (1983), 277. doi: 10.2307/2007030. Google Scholar

[22]

_____, The rate of mixing for geodesic and horocycle flows,, Ergodic Theory Dynam. Systems, 7 (1987), 267. Google Scholar

[23]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719. doi: 10.1002/cpa.3160340602. Google Scholar

[24]

A. Strömbergsson, On the uniform equidistribution of long closed horocycles,, Duke Math. J., 123 (2004), 507. doi: 10.1215/S0012-7094-04-12334-6. Google Scholar

[25]

R. Tiedra de Aldecoa, Spectral analysis of time changes for horocycle flows,, , (). Google Scholar

[26]

A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity,, Ann. of Math. (2), 172 (2010), 989. doi: 10.4007/annals.2010.172.989. Google Scholar

[27]

D. Zagier, Eisenstein series and the Riemann zeta function,, in, 10 (1981), 275. Google Scholar

show all references

References:
[1]

V. Bargmann, Irreducible unitary representations of the Lorentz group,, Ann. of Math. (2), 48 (1947), 568. doi: 10.2307/1969129. Google Scholar

[2]

A. Bufetov and G. Forni, Limit theorems for horocycle flows,, preprint, (2011), 1. Google Scholar

[3]

M. Burger, Horocycle flow on geometrically finite surfaces,, Duke Math. J., 61 (1990), 779. doi: 10.1215/S0012-7094-90-06129-0. Google Scholar

[4]

S. G. Dani, Invariant measures and minimal sets of horospherical flows,, Invent. Math., 64 (1981), 357. doi: 10.1007/BF01389173. Google Scholar

[5]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows,, Duke Math. J., 119 (2003), 465. doi: 10.1215/S0012-7094-03-11932-8. Google Scholar

[6]

H. Furstenberg, The unique ergodicity of the horocycle flow,, in, 318 (1973), 95. Google Scholar

[7]

I. M. Gel'fand and S. V. Fomin, Unitary representations of Lie groups and geodesic flows on surfaces of constant negative curvature, (Russian),, Dokl. Akad. Nauk SSSR (N.S.), 76 (1951), 771. Google Scholar

[8]

I. M. Gelfand and M. Neumark, Unitary representations of the Lorentz group,, Acad. Sci. USSR. J. Phys., 10 (1946), 93. Google Scholar

[9]

B. M. Gurevič, The entropy of horocycle flows, (Russian),, Dokl. Akad. Nauk SSSR, 136 (1961), 768. Google Scholar

[10]

G. A. Hedlund, Fuchsian groups and transitive horocycles,, Duke Math. J., 2 (1936), 530. doi: 10.1215/S0012-7094-36-00246-6. Google Scholar

[11]

D. A. Hejhal, On the uniform equidistribution of long closed horocycles. Loo-Keng Hua: A great mathematician of the twentieth century,, Asian J. Math., 4 (2000), 839. Google Scholar

[12]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory,, in, (2006), 649. Google Scholar

[13]

A. G. Kušnirenko, Spectral properties of certain dynamical systems with polynomial dispersal,, Vestnik Moskovskogo Universiteta. Ser. I Matematika Meh., 29 (1974), 101. Google Scholar

[14]

B. Marcus, Unique ergodicity of the horocycle flow: Variable negative curvature case,, Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 21 (1975), 133. Google Scholar

[15]

_____, Ergodic properties of horocycle flows for surfaces of negative curvature,, Ann. of Math. (2), 105 (1977), 81. Google Scholar

[16]

C. C. Moore, Exponential decay of correlation coefficients for geodesic flows,, in, 6 (1987), 163. Google Scholar

[17]

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators,, Comm. Math. Phys., 78 (): 391. doi: 10.1007/BF01942331. Google Scholar

[18]

O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, (Russian),, Uspekhi Mat. Nauk (N.S.), 8 (1953), 125. Google Scholar

[19]

M. Ratner, Factors of horocycle flows,, Ergodic Theory Dynam. Systems, 2 (1982), 465. doi: 10.1017/S0143385700001723. Google Scholar

[20]

_____, Rigidity of horocycle flows,, Ann. of Math. (2), 115 (1982), 597. Google Scholar

[21]

_____, Horocycle flows, joinings and rigidity of products,, Ann. of Math. (2), 118 (1983), 277. doi: 10.2307/2007030. Google Scholar

[22]

_____, The rate of mixing for geodesic and horocycle flows,, Ergodic Theory Dynam. Systems, 7 (1987), 267. Google Scholar

[23]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719. doi: 10.1002/cpa.3160340602. Google Scholar

[24]

A. Strömbergsson, On the uniform equidistribution of long closed horocycles,, Duke Math. J., 123 (2004), 507. doi: 10.1215/S0012-7094-04-12334-6. Google Scholar

[25]

R. Tiedra de Aldecoa, Spectral analysis of time changes for horocycle flows,, , (). Google Scholar

[26]

A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity,, Ann. of Math. (2), 172 (2010), 989. doi: 10.4007/annals.2010.172.989. Google Scholar

[27]

D. Zagier, Eisenstein series and the Riemann zeta function,, in, 10 (1981), 275. Google Scholar

[1]

Rafael Tiedra De Aldecoa. Spectral analysis of time changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 275-285. doi: 10.3934/jmd.2012.6.275

[2]

Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002

[3]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[4]

Kazuhiko Yamamoto, Kiyoshi Hosono, Hiroko Nakayama, Akio Ito, Yuichi Yanagi. Experimental data for solid tumor cells: Proliferation curves and time-changes of heat shock proteins. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 235-244. doi: 10.3934/dcdss.2012.5.235

[5]

Saloni Rathee, Nilam. Quantitative analysis of time delays of glucose - insulin dynamics using artificial pancreas. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3115-3129. doi: 10.3934/dcdsb.2015.20.3115

[6]

Alex Eskin, Gregory Margulis and Shahar Mozes. On a quantitative version of the Oppenheim conjecture. Electronic Research Announcements, 1995, 1: 124-130.

[7]

Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083

[8]

Jeffrey Boland. On rigidity properties of contact time changes of locally symmetric geodesic flows. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 645-650. doi: 10.3934/dcds.2000.6.645

[9]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems & Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[10]

Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229

[11]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[12]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[13]

Lee Patrolia. Quantitative photoacoustic tomography with variable index of refraction. Inverse Problems & Imaging, 2013, 7 (1) : 253-265. doi: 10.3934/ipi.2013.7.253

[14]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[15]

Anish Ghosh, Dubi Kelmer. A quantitative Oppenheim theorem for generic ternary quadratic forms. Journal of Modern Dynamics, 2018, 12: 1-8. doi: 10.3934/jmd.2018001

[16]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019027

[17]

Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291

[18]

Peter S. Kim, Joseph J. Crivelli, Il-Kyu Choi, Chae-Ok Yun, Joanna R. Wares. Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Mathematical Biosciences & Engineering, 2015, 12 (4) : 841-858. doi: 10.3934/mbe.2015.12.841

[19]

Ching-Lung Lin, Gunther Uhlmann, Jenn-Nan Wang. Optimal three-ball inequalities and quantitative uniqueness for the Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1273-1290. doi: 10.3934/dcds.2010.28.1273

[20]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]