• Previous Article
    A stochastic model of contagion with different individual types
  • JIMO Home
  • This Issue
  • Next Article
    An iterated greedy algorithm with variable neighborhood descent for the planning of specialized diagnostic services in a segmented healthcare system
doi: 10.3934/jimo.2019050

Optimal investment-reinsurance policy with regime switching and value-at-risk constraint

1. 

Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and Economics, Tianjin 300222, China

2. 

Department of Mathematical Sciences, University of Nevada, Las Vegas, NV89154, United States

*Corresponding author

Received  April 2018 Revised  October 2018 Published  May 2019

Fund Project: This project was supported by Tianjin philosophy and social science planning project (TJGLQN18-005)

This paper studies an optimal investment-reinsurance problem for an insurance company which is subject to a dynamic Value-at-Risk (VaR) constraint in a Markovian regime-switching environment. Our goal is to minimize its ruin probability and control its market risk simultaneously. We formulate the problem as an infinite horizontal stochastic control problem with the constrained strategies. The dynamic programming technique is applied to derive the coupled Hamilton-Jacobi-Bellman (HJB) equations and the Lagrange multiplier method is used to tackle the dynamic VaR constraint. Furthermore, we propose an efficient numerical method to solve those HJB equations. Finally, we employ a practical example from the Korean market to verify the numerical method and analyze the optimal strategies under different VaR constraints.

Citation: Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019050
References:
[1]

A. Ang and G. Bekaert, International asset allocation with regime shifts, Review of Financial Studies, 15 (2002), 1137-1187. doi: 10.1093/rfs/15.4.1137.

[2]

S. Browne, Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958. doi: 10.1287/moor.20.4.937.

[3]

H. Bühlmann, Mathematical Methods in Risk Theory, Springer, Berlin, 1970.

[4]

Y. Cao and X. Zeng, Optimal proportional reinsurance and investment with minimum probability of ruin, J. Nanjing Norm. Univ. Nat. Sci. Ed., 36 (2013), 1-9.

[5]

R. ChenK. A. Wong and H. C. Lee, Underwriting cycles in Asia, Journal of Risk and Insurance, 66 (1999), 29-47. doi: 10.2307/253876.

[6]

P. Chen and S. C. P. Yam, Optimal proportional reinsurance and investment with regime-switching for mean-variance insurers, Insurance: Mathematics & Economics, 53 (2013), 871-883. doi: 10.1016/j.insmatheco.2013.10.004.

[7]

S. ChenZ. Li and K. Li, Optimal investment-reinsurance policy for an insurance company with VaR constraint, Insurance: Mathematics & Economics, 47 (2010), 144-153. doi: 10.1016/j.insmatheco.2010.06.002.

[8]

S. Choi and P. D. Thistle, The property/liability insurance cycle: A comparison of alternative models, Southern Economic Journal, 68 (2002), 530-548. doi: 10.2307/1061716.

[9]

D. CuocoH. He and S. Isaenko, Optimal dynamic trading strategies with risk limits, Operations Research, 56 (2001), 358-368. doi: 10.1287/opre.1070.0433.

[10]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer, 1995.

[11]

H. G. Fung and R. C. Witt, Underwriting cycles in property and liability insurance: An empirical analysis of industry and byline data, Journal of Risk and Insurance, 65 (1998), 539-561. doi: 10.2307/253802.

[12]

A. Gundel and S. Weber, Utility maximization under a shortfall risk constraint, Journal of Mathematical Economics, 44 (2008), 1126-1151. doi: 10.1016/j.jmateco.2008.01.002.

[13]

B. G. Jang and K. T. Kim, Optimal reinsurance and asset allocation under regime switching, Journal of Banking and Finance, 56 (2015), 37-47. doi: 10.1016/j.jbankfin.2015.03.002.

[14]

Z. JinG. Yin and F. Wu, Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods, Insurance: Mathematics & Economics, 53 (2013), 733-746. doi: 10.1016/j.insmatheco.2013.09.015.

[15]

Z. Liang and J. Guo, Optimal proportional reinsurance under two criteria: Maximizing the expected utility and minimizing the value at risk, Anziam Journal, 51 (2010), 449-463. doi: 10.1017/S1446181110000878.

[16]

J. Liu, K. F. C. Yiu, R. C. Loxton, K. L. Teo, Optimal investment and proportional reinsurance with risk constraint, Journal of Mathematical Finance 3 (4) (2013) 437–447. doi: 10.4236/jmf.2013.34046.

[17]

J. Liu, K. F. C. Yiu, T. K. Siu and W. K. Ching, Optimal investment-reinsurance with dynamic risk constraint and regime switching, Scandinavian Actuarial Journal, 3 (2013), Article ID: 38147, 11 pages. doi: 10.1080/03461238.2011.602477.

[18]

H. Schmidli, Stochastic Control in Insurance, Springer, London, 2008.

[19]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scandinavian Actuarial Journal, 1 (2001), 55-68. doi: 10.1080/034612301750077338.

[20]

M. I. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios, Finance and Stochastics, 7 (2003), 97-121. doi: 10.1007/s007800200073.

[21]

K. F. C. Yiu, Optimal portfolios under a value-at-risk constraint, Journal of Economic Dynamics & Control, 28 (2004), 1317-1334. doi: 10.1016/S0165-1889(03)00116-7.

[22]

K. F. C. YiuJ. LiuT. K. Siu and W. K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989. doi: 10.1016/j.automatica.2010.02.027.

[23]

C. Zhu, Optimal control of the risk process in a regime-switching environment, Automatica, 47 (2011), 1570-1579. doi: 10.1016/j.automatica.2011.03.007.

show all references

References:
[1]

A. Ang and G. Bekaert, International asset allocation with regime shifts, Review of Financial Studies, 15 (2002), 1137-1187. doi: 10.1093/rfs/15.4.1137.

[2]

S. Browne, Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958. doi: 10.1287/moor.20.4.937.

[3]

H. Bühlmann, Mathematical Methods in Risk Theory, Springer, Berlin, 1970.

[4]

Y. Cao and X. Zeng, Optimal proportional reinsurance and investment with minimum probability of ruin, J. Nanjing Norm. Univ. Nat. Sci. Ed., 36 (2013), 1-9.

[5]

R. ChenK. A. Wong and H. C. Lee, Underwriting cycles in Asia, Journal of Risk and Insurance, 66 (1999), 29-47. doi: 10.2307/253876.

[6]

P. Chen and S. C. P. Yam, Optimal proportional reinsurance and investment with regime-switching for mean-variance insurers, Insurance: Mathematics & Economics, 53 (2013), 871-883. doi: 10.1016/j.insmatheco.2013.10.004.

[7]

S. ChenZ. Li and K. Li, Optimal investment-reinsurance policy for an insurance company with VaR constraint, Insurance: Mathematics & Economics, 47 (2010), 144-153. doi: 10.1016/j.insmatheco.2010.06.002.

[8]

S. Choi and P. D. Thistle, The property/liability insurance cycle: A comparison of alternative models, Southern Economic Journal, 68 (2002), 530-548. doi: 10.2307/1061716.

[9]

D. CuocoH. He and S. Isaenko, Optimal dynamic trading strategies with risk limits, Operations Research, 56 (2001), 358-368. doi: 10.1287/opre.1070.0433.

[10]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer, 1995.

[11]

H. G. Fung and R. C. Witt, Underwriting cycles in property and liability insurance: An empirical analysis of industry and byline data, Journal of Risk and Insurance, 65 (1998), 539-561. doi: 10.2307/253802.

[12]

A. Gundel and S. Weber, Utility maximization under a shortfall risk constraint, Journal of Mathematical Economics, 44 (2008), 1126-1151. doi: 10.1016/j.jmateco.2008.01.002.

[13]

B. G. Jang and K. T. Kim, Optimal reinsurance and asset allocation under regime switching, Journal of Banking and Finance, 56 (2015), 37-47. doi: 10.1016/j.jbankfin.2015.03.002.

[14]

Z. JinG. Yin and F. Wu, Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods, Insurance: Mathematics & Economics, 53 (2013), 733-746. doi: 10.1016/j.insmatheco.2013.09.015.

[15]

Z. Liang and J. Guo, Optimal proportional reinsurance under two criteria: Maximizing the expected utility and minimizing the value at risk, Anziam Journal, 51 (2010), 449-463. doi: 10.1017/S1446181110000878.

[16]

J. Liu, K. F. C. Yiu, R. C. Loxton, K. L. Teo, Optimal investment and proportional reinsurance with risk constraint, Journal of Mathematical Finance 3 (4) (2013) 437–447. doi: 10.4236/jmf.2013.34046.

[17]

J. Liu, K. F. C. Yiu, T. K. Siu and W. K. Ching, Optimal investment-reinsurance with dynamic risk constraint and regime switching, Scandinavian Actuarial Journal, 3 (2013), Article ID: 38147, 11 pages. doi: 10.1080/03461238.2011.602477.

[18]

H. Schmidli, Stochastic Control in Insurance, Springer, London, 2008.

[19]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scandinavian Actuarial Journal, 1 (2001), 55-68. doi: 10.1080/034612301750077338.

[20]

M. I. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios, Finance and Stochastics, 7 (2003), 97-121. doi: 10.1007/s007800200073.

[21]

K. F. C. Yiu, Optimal portfolios under a value-at-risk constraint, Journal of Economic Dynamics & Control, 28 (2004), 1317-1334. doi: 10.1016/S0165-1889(03)00116-7.

[22]

K. F. C. YiuJ. LiuT. K. Siu and W. K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989. doi: 10.1016/j.automatica.2010.02.027.

[23]

C. Zhu, Optimal control of the risk process in a regime-switching environment, Automatica, 47 (2011), 1570-1579. doi: 10.1016/j.automatica.2011.03.007.

Figure 1.  $ u_1^*(x) $ with different MVaR levels
Figure 2.  $ u_2^*(x) $ with different MVaR levels
Figure 3.  $ \pi_1^*(x) $ with different MVaR levels
Figure 4.  $ \pi_2^*(x) $ with different MVaR levels
Figure 5.  $ V_1(x) $ with different MVaR levels
Figure 6.  $ V_2(x) $ with different MVaR levels
[1]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[2]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[3]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[4]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[5]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[6]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[7]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[8]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[9]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[10]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[11]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[12]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[13]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[14]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control & Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[15]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[16]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018132

[17]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018166

[18]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[19]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[20]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (14)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]